La ecuación de Burgers

En este blog sabéis que periódicamente ponemos entradas de física, o mejor aún, de cómo las matemáticas se utilizan para explicar cosas de física (ver por ejemplo ésta, ésta y ésta otra entrada). La que colgamos hoy es de esas. Además ésta estaba pendiente porque en una entrada sobre varios modelos de las ecuaciones de Euler dije que iba a escribir sobre la ecuación de Burgers. Pues bien, aquí está.

La ecuación de Burgers no viscosa (que toma su nombre de J.M. Burgers) se escribe de la siguiente manera

\partial_t u(x,t)+u(x,t)\partial_x u(x,t)=0,\;\; u(x,0)=f(x)\;\;\quad (1).

Se trata de una ecuación de primer orden no lineal y suele ser el primer ejemplo de ecuación no lineal que se pone en los libros de texto (para una lectura rápida sobre las propiedades de algunas ecuaciones en derivadas parciales sencillas leed esto). Se trata además de la primera ecuación que surge de manera natural cuando uno quiere entender las ecuaciones de Euler y también “refleja” (más o menos) el comportamiento de una ola (ver un artículo reciente sobre este tipo de ecuaciones aquí).

Si pasamos esquivando el cuestión de la existencia o no de solución para dicho problema (1) y directamente suponemos que existe tal solución y que además es una función “suave”, i.e., con tantas derivadas como nos hagan falta, podemos obtener una propiedad importante de manera muy sencilla. Supongamos que tenemos una solución u(x,t) que tiene, al menos, dos derivadas en x, y supongamos además que dicha solución se va muy rápido a cero cuando |x| se hace muy grande. Dicha solución tendrá un mínimo (o ínfimo), y un máximo (o supremo) y sus posiciones dependerán del tiempo. Como la función tiende a cero en el infinito estos valores se alcanzan (es decir, no son ínfimos/supremos). Denotemos el punto donde u(x,t) alcanza su mínimo como x_t y el punto donde u(x,t) alcanza su máximo como X_t. Por lo tanto, fijo t,

u(x_t,t)=\min_x \{u(x,t)\},

y

u(X_t,t)=\max_x \{u(x,t)\}.
En estos puntos la ecuación queda
\partial_t u(X_t,t)+u(X_t,t)\partial_x u(X_t,t)=\partial_t u(X_t,t)=0,

y

\partial_t u(x_t,t)+u(x_t,t)\partial_x u(x_t,t)=\partial_t u(x_t,t)=0,

y obtenemos que tanto el máximo como el mínimo del dato inicial se conservan,

\max_x u(x,t)=\max_x f(x),

y

\min_x u(x,t)=\min_x f(x).

Si ahora repetimos el argumento para la evolución de \min_x \partial_x u obtenemos, si x_t es el punto de mínimo, la siguiente ecuación

\partial_t \partial_x u(x_t,t)+(\partial_x u(x_t,t))^2=0.\quad (2)

Ahora observamos que (2) es una EDO que se puede resolver explícitamente (¿sabrías cómo hacerlo?)

y tenemos que, si 0<t=-\min_x \partial_x f(x), |\partial_x u(x_t,t)|=\infty.

Veamos unas simulaciones para entender bien lo que pasa aquí:

Esto es un ejemplo de singularidad. Tampoco debería sorprendernos, pues esta ecuación aparece relacionada con olas y parece reflejar el hecho de que las olas “rompen”.

¿Qué pasa si ahora añadimos una pequeña viscosidad con la forma de un laplaciano? (Esta difusión puede generalizarse, por ejemplo como en [2])

\partial_t u(x,t)+u(x,t)\partial_x u(x,t)=\nu \partial_x^2 u(x,t),\;\; u(x,0)=f(x)\;\;\quad (2).

Esta ecuación se conoce como Ecuación de Burgers viscosa y puede entenderse como un modelo (en realidad una caricatura) de la ecuación de Navier-Stokes. Bueno, ahora la cuenta anterior no es tan sencilla, porque el término difusivo, el laplaciano, tiene signo “bueno”, es decir, se opone a los crecimientos descontrolados como los que se veían en el vídeo anterior. De hecho, usando la transformación de Cole-Hopf (ver aquí) se puede ver que esta ecuación tiene existencia global para cualquier valor de \nu.

De esta manera, el vídeo ahora es

–Referencias:

1) Vincent Duchene, “Decoupled and unidirectional asymptotic models for the propagation of internal waves”, preprint Arxiv, http://arxiv.org/abs/1208.6394.

2) RGB y José Manuel Moreno, “La ecuación de Burgers como un paso previo al estudio de los fluidos incompresibles”, La Gaceta de la RSME, vol 15, num 3, pag, 489-512, 2012. ArXiv preprint http://arxiv.org/abs/1105.5990.

–Nota: Como lo de aproximar soluciones de EDPs es algo muy útil, dedicaremos una entrada próximamente a un método sencillo que produce muy buenos resultados.

Problemas de frontera “no-tan-libre”

Resulta que en el Instituto de Ciencias Matemáticas hay un “Working Pizza Seminar“, (además del enlace “oficial” aquí se puede ver el enlace al blog del ICMAT) es decir, un sitio donde se dan charlas informales sobre temas de investigación actual y, además, te dan pizza para comer, y hoy he torturado hablado yo.

He hablado un poco de las cosas que he estado haciendo estos casi 3 años que llevo con la tesis (ver las diapositivas aquí PizzaWorkingSeminar). Es decir, he tratado problemas de frontera libre que surgen en el movimiento de fluidos incompresibles en medios porosos inhomogéneos. Así, por ejemplo, he explicado entre otras cosas, cuándo este tipo de olas puede tener singularidades

Y también cuando es de esperar que no.

Además he comparado diversos modelos existentes. Por ejemplo he comparado el caso homogéneo con profundidad infinita con el caso homogéneo con profundidad finita (puede argumentarse que las fronteras del dominio serían zonas de permeabilidad nula y por lo tanto el problema sería inhomogéneo… pero dejémoslo estar)

También he comparado casos con distinta permeabilidad

Todos estos problemas son interesantes, por ejemplo, de cara a la obtención de energía. En efecto, si uno quiere extraer petróleo lo que se suele hacer es inyectar agua a presión de manera que ésta lo desplaza, expulsándolo (ver aquí). Otra fuente de energía, esta vez mucho menos conocida, es la energía geotérmica (ver aquí). Ahí típicamente se tiene una zona de permeabilidad altísima, una de permeabilidad más normal y ambas se encuentran acotadas por capas impermeables. Ahí se tiene que el agua está muy caliente debido al calor propio del núcleo de la Tierra y por lo tanto puede aprovecharse para obtener electricidad.

–Nota: La portada hay que agradecérsela a Elena Hontangas Martínez :-)

–Nota 2: Parece mentira la cantidad de cuadros que hay dedicados exclusivamente a las olas. Será la única cosa que tengan en común matemáticos y artistas en sus respectivos trabajos…

Sobre las singularidades en Euler y la conjetura de Onsager

Hace algún tiempo escribíamos (ver aquí) sobre un modelo de las ecuaciones de Euler en 3d. La historia de este artículo acabó pronto porque había un error y lo retiraron. Hoy ha aparecido un artículo en Arxiv donde afirman que

A class of singular 3D-velocity vector fields of finite energy is constructed which satisfy the incompressible 3D-Euler equation. It is shown that such a solution scheme does not exist in dimension 2. The solutions constructed are smooth up to finite time where they become singular.

Es decir, afirman haber conseguido soluciones de Euler 3D que son suaves hasta un tiempo finito donde se vuelven singulares. Esto es un teoremazo de ser cierto. Sin embargo, al abrir interesado el artículo empiezan las dudas. El argumento parece ser considerar una familia de soluciones dada por

v_i(x,t)=\frac{f_i(x)}{t-1},

y ver qué han de satisfacer dichas f_i(x) para que v satisfaga las ecuaciones de Euler. Observamos que para esta familia se tiene que

\int_{\mathbb{R}^3}|v(x,t)|^2dx=(t-1)^{-2}\int_{\mathbb{R}^3}|f(x)|^2dx\rightarrow \infty\text{ as }t\rightarrow1. \quad (1)

Aquí es donde entra la conjetura de Onsager. Dicha conjetura dice que si v es un campo de velocidades suficientemente regular (más regular que Hölder-1/3) entonces la norma L^2 (que es la cantidad descrita anteriormente en (1)) se conserva. Si no

”…in three dimensions a mechanism for complete dissipation of all kinetic energy, even without the aid of viscosity, is available.” Lars Onsager

Se sabe que si la solución es regular conserva la energía, (es un artículo de Constantin, E y Titi de los años 90) mientras que un reciente artículo de C. De Lellis y L. Székelyhidi Jr. se prueba que existen soluciones Hölder-1/10 que no conservan la energía cinética (ver (1)).

Es decir, o a mí se me está escapando algo o (1) es incompatible con lo que se conoce.

–Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 26, organizado esta vez por ZTFNews.

Problemas de frontera “no-tan-libre” en dinámica de fluidos: primeros pasos

Decía el señor Swett Marden que

“Un guijarro en el lecho de un pobre arroyuelo puede mudar el curso de un río”.

Parece una exageración y sin duda lo es, pero sirve para que nos hagamos la siguiente pregunta:

¿Cómo de importante es el lecho marino para las olas en la superficie?

Ésta es la pregunta que tratamos de contestar en este artículo. El problema que queremos entender es, dados dos fluidos incompresibles en un medio poroso acotado, ¿cómo se comporta la interfase entre ambos y que diferencias presenta con el caso en el que el medio no esta acotado? Bueno, vamos a trasladar ese problema físico a ecuaciones en derivadas parciales. Tenemos una densidad que presenta dos valores según estemos por encima o por debajo de la interfase, que denotamos por ,

Que los fluidos sean incompresibles y se muevan en un medio poroso acotado quiere decir que el dominio espacial de los fluidos es 

y que la velocidad satisface la Ley de Darcy y la condición de incompresibilidad

Estas ecuaciones se puede trasladar a una única ecuación para la interfase:

Ahora que tenemos el problema cabe preguntarnos si el hecho de que el dominio sea S y no \mathbb{R}^2 cambia mucho la situación. Para hacernos una idea podemos hacer unas simulaciones numéricas preliminares. Para ello consideramos un dato inicial y lo hacemos evolucionar en el caso donde el medio tiene profundidad finita (caso acotado) y también en el caso en el que el medio tiene una profundidad infinita (caso no acotado). Por supuesto el resto de los parámetros físicos son los mismos en ambas evoluciones. Así observamos lo siguiente

(Si no ves bien las imágenes pincha en ellas para hacerlas más grandes)

Parece claro a la vista de estos resultados que el hecho de que el medio esté acotado o no es relevante para las olas.

Una vez que tenemos el problema propuesto tenemos que empezar a sacar teoremas :-P. Evitando tecnicismos lo primero que probamos es

1) (Existencia y unicidad) que si el fluido de arriba es más ligero que el que está abajo el problema tiene una solución.

1.b) (Existencia y unicidad 2) que si el fluido de arriba es más pesado que el de abajo pero la interfase inicial es analítica existe una solución.

2) (Efecto regularizante) que dicha solución se vuelve muy regular (analítica) para cualquier t>0 (compárese con la ecuación del calor aquí.)

De momento estos 3 teoremas son idénticos en su enunciado a los teoremas cuando la profundidad es infinita. ¿Sorprendido? Bueno, esto sólo quiere decir que para probar matemáticamente las diferencias que hemos visto en los vídeos y las imágenes anteriores tenemos que trabajar un poco más, así que sed pacientes y esperad a la siguiente entrada ;-).

Bueno, si os veis muy impacientes podéis leer (o, en su caso, releer) ésta, ésta y esta entrada.

–Referencias:

D. Córdoba, RGB, R.Orive, The confined Muskat problem: differences with the deep water regime.

–Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 26, organizado esta vez por ZTFNews.

–Nota 2: Con esta entrada participamos también en el Carnaval de Física en su edición XXXIV que organiza Hablando de Ciencia.

Las “singulares” ecuaciones de los fluidos

Recientemente ha salido en Arxiv un artículo, de Thomas Hou y Zhen Lei, donde prueban singularidades para un modelo de las ecuaciones de Euler incompresibles tridimensionales. Este no es uno de los problemas del milenio, pero está íntimamente relacionado con uno de ellos. Me refiero al problema de la existencia de singularidades en las ecuaciones de Navier-Stokes incompresibles.

Las ecuaciones de Euler incompresibles representan las velocidades de un fluido incompresible y no viscoso. Podemos pensar en agua. Las ecuaciones de Navier-Stokes incompresibles representan las velocidades de un fluido incompresible y viscoso. Por lo tanto están más cerca de captar la realidad.

Veamos este video:

Durante los primeros segundos salen en pantalla un par de recipientes con dos fluidos distintos. Pues bien, las ecuaciones de Euler son una aproximación correcta al fluido de la izquierda, mientras que no lo son para el de la derecha debido a la enorme viscosidad que tiene. En este otro vídeo vemos otro efecto de la viscosidad: el fluido verde se “pega” al fondo del vaso.

Ahora bien, ¿qué significa que haya una singularidad en las ecuaciones de Euler? Bueno, estas ecuaciones (en el caso de un fluido homogéneo) son:

a) la conservación de momento: (3 ecuaciones)

b) la condición de incompresibilidad: (1 ecuación)

donde \nabla=(\partial_{x},\partial_y,\partial_z) y \vec{u}=(u_1,u_2,u_3).

Viendo que el operador \nabla y \partial_t son derivadas un primer significado de la ecuación está claro: un campo de vectores \vec{u} es solución de las ecuaciones de Euler incompresibles cuando sus derivadas satisfacen las ecuaciones anteriores en cada punto (x,y,z) del espacio para todo tiempo t.

Así, diremos que hay una singularidad cuando alguna o varias de estas derivadas no exista para algún punto del espacio (x,y,z) en algún tiempo tPor ejemplo, podemos pensar en la función |x| que no tiene derivada en el punto x=0.

Pues bien, la existencia de singularidades (o su inexistencia) es un tema central desde el punto de vista matemático y físico porque es crucial a la hora de derivar el modelo. Es decir, si no hubiese una solución para todo tiempo entonces es que las hipótesis de las que se derivan las ecuaciones NO se satisfacen y, por lo tanto, las ecuaciones no tienen sentido físico. Visto así, casi es un alivio, porque, o sabemos resolver las ecuaciones para todo tiempo o no tenemos que hacerlo.

Para acabar con esta entrada voy a dejar un enlace a una entrada previa sobre el resultado de Ángel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo y Javier Gómez sobre las singularidades en las olas (observad que el agua en una ola sigue las ecuaciones de Euler). Estas singularidades en la superficie no son del mismo tipo de las comentadas en la entrada y por eso no las mencionamos más.

Probablemente, si saco algo de tiempo, escribiré alguna entrada sobre el modelo de Euler más sencillo que conozco, la ecuación de Burgers.

Nota: Esta entrada participa en el Carnaval de Matemáticas en su edición 3.141, que organiza el blog Desequilibrios.

Integradores variacionales (Marca ACME) por Fernando Jiménez

Una de las mayores desgracias que sufren los matemáticos, físicos, ingenieros y otros científicos que se ocupan de estudiar la naturaleza desde un punto de vista cuantitativo, es la de no saber resolver (en algunos casos) las ecuaciones diferenciales que esa misma naturaleza, con un poco de mala leche, les plantea. Probablemente esta afirmación no es la mejor publicidad para la ciencia y quienes la practican (… ¡que no saben resolver las ecuaciones!…, pensarán algunos imaginándose un avión en caída libre) aunque, quizá, la dificultad de encontrar dichas soluciones en términos de funciones elementales les proporcione cierto cuartelillo. De hecho, ese cuartelillo no tarda en llegar cuando se presentan ciertos antecedentes al gran público. La reacción de la hermana filóloga de un amigo que se dedica a la física de cuerdas viene bastante al caso: ¡pero cómo van a encontrar la solución!, ¿acaso has visto sus hojas? -le dijo a su madre, mientras discutíamos todos juntos el asunto, refiriéndose a las notas de su hermano. La solución analítica de las ecuaciones diferenciales es por tanto como un ciervo blanco. Pero, ¿quién la necesita cuando se puede encontrar una buena aproximación?

El Análisis es la rama de las matemáticas que se encarga, entre otras cosas, de demostrar que la solución de las ecuaciones diferenciales existe (lo que, aunque los científicos aplicados no lo crean, resulta un gran alivio), mientras que el Análisis Numérico, entre otras cosas, se ocupa de encontrar aproximaciones de esas esquivas soluciones, que llamaremos integradores, y de estudiar sus propiedades.  Las ecuaciones de la física clásica tienen carácter diferencial y se obtienen a partir de la acción de un sistema dado (integral de la función lagrangiana) a partir de principios variacionales (para entradas anteriores sobre este tema ver aquí, aquí o aquí). Se puede probar la existencia de las soluciones a dichas ecuaciones, aunque en muchos casos, sobre todo en los más complejos (que suelen coincidir con los de mayor interés práctico) no sabemos encontrarlas. ¿Debemos encogernos en un rincón y ponernos a llorar? ¡Ni mucho menos! Como se menciona antes, el Análisis Numérico nos echa una mano con sus integradores.

Por otro lado, desde la mitad del siglo pasado se han introducido métodos topológicos y geométricos en el estudio de las ecuaciones diferenciales, en especial de aquellas que provienen de la física y que están relacionadas con sistemas mecánicos (desde los más simples, como puede ser un péndulo o una bolita deslizándose plano abajo, hasta los más complejos, como puede ser el Sistema Solar). Este nuevo campo de investigación que reformula la Mecánica Clásica en lenguaje geométrico se llama actualmente Mecánica Geométrica, y nos enseña interesantes propiedades de las soluciones a las ecuaciones mecánicas. Habitualmente, estas propiedades están relacionadas con la preservación de alguna cantidad geométrica. Ejemplos son la forma simpléctica, cuyo nombre asusta pero que está conectada de una forma más pedestre con el volumen del sistema bajo estudio, o las aplicaciones momento, inquietantes objetos en íntima relación con la simetría de las funciones lagrangiana o hamiltoniana y que nos dan información sobre los invariantes del sistema y parte de su comportamiento (por ejemplo, el hecho de que las órbitas de los planetas estén contenidas en un plano puede explicarse de forma sencilla diciendo que el momento angular de dicho planeta se conserva). El concepto de simetría tiene gran importancia en las matemáticas y física modernas, sobre todo a nivel cuántico. Su vínculo con la preservación de cantidades geométricas, cantidades que en algunos casos tienen una interpretación física reconocible, se encapsula en uno de los hitos más importantes de las matemáticas del siglo XX: el teorema de Noether.

Todo lo anterior está perfectamente formalizado cuando pensamos en las soluciones exactas a las ecuaciones diferenciales (que sabemos que existen). A nivel práctico… ¿qué pasa cuando no sabemos encontrarlas? ¿Nos echamos a llorar de nuevo? ¿Tienen nuestros útiles integradores las mismas propiedades? ¿Preservan a nivel numérico las mismas cantidades que sus contrapartes exactas preservan a nivel continuo? El área de las matemáticas que se encarga de responder a estas preguntas a nivel geométrico es la Mecánica Discreta, área relativamente moderna y en plena ebullición. La respuesta suele ser positiva, bajo ciertas condiciones, lo que nos ofrece una bonita simetría especular entre el mundo de las soluciones exactas y el mundo de los integradores. ¿Hay alguna forma variacional de obtener dichos integradores, tal y como ocurre con las ecuaciones continuas de la física? De nuevo la respuesta es sí, lo que da lugar a uno de los objetos más interesantes y más prácticos dentro de la Mecánica Discreta: los integradores variacionales. La última pregunta suele ser la más peliaguda: ¿son realmente mejores, en algún sentido, los integradores con propiedades geométricos que aquéllos que no las tienen? Pensándolo fríamente, a la hora de simular un sistema mediante un integrador, lo que uno pretende es que dicho integrador sea eficiente, robusto, preciso (es decir, que se aproxime a la solución exacta lo máximo posible) y que sea fácil de traducir en algoritmos comprensibles por un ordenador. Bajo estas consideraciones se puede decir que los integradores geométricos, en concreto los variacionales, no son mejores ni peores que los demás. Lo que sí se comprueba es que algunos de ellos, en concreto los que preservan la forma simpléctica, presentan gran robustez cuando se hacen simulaciones a tiempos largos (son simplécticos, por ejemplo, los integradores empleados en las simulaciones del Sistema Solar).

Lo que sí se puede concluir en cualquier caso, es que tanto el Análisis Numérico como cualquiera de sus estribaciones geométricas, ya sea en forma de Integración Geométrica o Mecánica Discreta, no son áreas menores de las matemáticas o una forma humilde de capitular ante la incapacidad de encontrar soluciones analíticas a ciertas ecuaciones. Todo lo contrario, son ramas poderosas, intrigantes y de gran utilidad práctica, que nos proporcionan lo que la mayoría de las veces resulta más inteligente: una forma de encontrar una solución alternativa y aproximada a un problema demasiado difícil. O en otras palabras: una forma de avanzar en lugar de quedarse paralizado.

–Nota: Esta entrada la ha escrito Fernando Jiménez.

Las matemáticas como ciencia experimental

Actualmente cuando uno piensa en problemas sin resolver en física piensa en la Teoría del Todo, en el bosón de Higgs o en los límites de validez de la mecánica cuántica. Sin embargo, existen problemas que son fáciles de entender que aún no tienen respuesta. Problemas que sólo involucran a la mecánica de Newton y que todavía no sabemos cómo atacar. Vamos a introducir el que nos ocupa con un experimento que puede ser fácilmente realizado en casa. Continue reading

Resolviendo la ecuación de ondas…

Tradicionalmente los matemáticos que trabajamos en el área de ecuaciones en derivadas parciales estudiamos problemas que vienen de procesos físicos. Es el caso de la ecuación del calor, la ecuación de Poisson o la ecuación de ondas. En esta entrada vamos a exponer dos métodos para resolver la ecuación de ondas. Estos métodos al tener un planteamiento distinto dan una información distinta. Veremos así diferencias entre pensar en las ecuaciones sólo o pensar en el fenómeno que modelizan. La ecuacion de ondas es
\displaystyle\partial_t\partial_t u=\partial_x\partial_x u,
junto a dos valores iniciales (tiene dos derivadas en tiempo) y las condiciones de contorno, que aquí tomamos dirichlet homogéneas. Esta ecuación refleja la separación del equilibrio de la cuerda en tiempo t y en el punto x.
Jean Le Rond D’Alembert demostró que si consideramos toda la recta (es decir, sin contornos) entonces podemos escribir la solución como una superposición de ondas, una que viaja hacia la derecha y otra que viaja hacia la izquierda. Estas ondas se escriben en función de los valores iniciales. Podemos hacer lo mismo en dominios acotados o semi acotados, pero es más lío.
Esta aproximación es puramente teórica, muchas ecuaciones admiten solución en forma de onda viajera (por ejemplo la de Fisher-Kolmogorov, \partial_t u=\partial_x\partial_x u +u(1-u) ). En este caso podemos esperarlo si observamos que podemos ‘factorizar’ el operador como dos operadores de transporte   Continue reading

De cuerdas y tambores, o cómo la física aparece en un problema de matemáticas

Cualquier estudiante de física tiene claro o al menos intuye cómo aparecen las matemáticas al estudiar problemas de física. Hoy vamos a hablar de cómo aparece la física en un teorema abstracto de matemáticas. Continue reading

Introducción al cálculo variacional en las matemáticas

Esta entrada es la gemela de la entrada Introducción al cálculo variacional en la física (http://scientiapotentiaest.ambages.es/?p=87). En ella David nos decía

Queremos saber qué camino tomará un cuerpo en una cierta situación. Imaginemos que tenemos una cantidad (un funcional, matemáticamente hablando), a la que llamaremos acción (con unidades de energía por segundo), que depende del “camino” que ese cuerpo toma en su movimiento. Esa acción puede ser calculada para cada cualquier camino siempre y cuando tenga una cierta regularidad.  Pues bien, el camino real, el que tomará el cuerpo y que podrá ser predicho, es aquel que hace de la acción un mínimo (más rigurosamente, un valor estacionario).

Así, el enfoque en mecánica clásica es: dado un sistema físico, obtenemos un funcional; a este funcional se le calculan los puntos críticos y esos puntos críticos nos dan las soluciones del problema. Matemáticamente esto es ir del funcional a la ecuación diferencial.

Veamos esto con un ejemplo: Supongamos que tenemos una partícula de masa unidad bajo el influjo de un potencial U(x) (sistema físico).

Entonces el Lagrangiano se define como

L=E_c-E_p

donde E_c=\frac{1}{2}\left(\frac{dx}{dt}\right)^2 es energía cinética, que depende de la velocidad v=\frac{dx}{dt};  y E_p es energía potencial, que depende del potencial U en el lugar donde la particula se encuentra. Entonces se tiene, si la posición de la partícula se denota como x, que el lagrangiano es

L(x)=\frac{1}{2}\left(\frac{dx}{dt}\right)^2-U(x).

Ahora definimos la acción como A[x]=\int_0^t L(x)dt. Esta acción la hemos obtenido de consideraciones físicas como son la definición de energía cinética y potencial.

Una vez tenemos la acción, queremos minimizarla. Para esto hemos de encontrar los puntos críticos. Si fuese una función de una variable normal y corriente derivaríamos e igualaríamos a 0. Derivar es encontrar el cambio de una cantidad cuando se varía otra de manera infinitesimal. Aquí la idea es similar. Lo que hacemos es, dada una perturbación con los extremos fijos (v(t) tal que v(0)=v(t)=0) de nuestra trayectoria x consideramos la curva y(t)= x(t)+sv(t).

Ahora pensamos la acción para esta nueva curva y como una función de s,

A[y](s)=\int_0^t L(y(t))dt,

y obtenemos el cambio en ella cuando variamos ligeramente s; esto es, derivamos en s y hacemos s=0.

\frac{d}{ds}A[y](s)\bigg{|}_{s=0}=\frac{d}{ds}\left(\int_0^t L(y(t))dt\right)\bigg{|}_{s=0}

Calculamos, utilizando la regla de la cadena,

L(y)=\frac{1}{2}\left(\frac{dx}{dt}+s\frac{dv}{dt}\right)^2-U(x+sv),

\frac{d}{ds}U(x+sv)\bigg{|}_{s=0}=U'(x)v, (para el potencial)

\frac{d}{ds}\frac{1}{2}\left(\frac{dx}{dt}+s\frac{dv}{dt}\right)^2\bigg{|}_{s=0}=\frac{dx}{dt}\frac{dv}{dt}, (para la energía cinética).

Sustituyendo obtenemos \int_0^t \frac{dx}{dt}\frac{dv}{dt} dt-\int_0^t U'(x)vdt, y si integramos por partes en la primera integral nos queda

\int_0^t (-\frac{d^2x}{dt^2}-U'(x))vdt.

Esta integral debe ser 0 para que nuestra x sea un punto crítico del funcional, y además debe serlo para toda perturbación v.

Estas consideraciones nos imponen una relación entre las derivadas \frac{d^2x}{dt^2} y U'(x),

\frac{d^2x}{dt^2}+U'(x)=0

que es, nada más y nada menos, la segunda ley de Newton.

Este enfoque va desde el funcional, que se obtiene con consideraciones físicas, a la ecuación diferencial. O de otra manera, se usa una ecuación diferencial para solucionar un problema de minimizar un funcional.

Sin embargo también existe el método inverso. Supongamos que tenemos una ecuación diferencial (generalmente en derivadas parciales) como puede ser

\Delta u= f(u)

con f una función no lineal, por ejemplo un polinomio. Así, el llamado Método Directo del Cálculo de Variaciones consiste en definir un funcional tal que sus puntos críticos vengan dados por la ecuación que era nuestro problema original.

Demostrar la existencia de solución para la ecuación original es lo mismo que conseguir un punto crítico de nuestro funcional. Si además probamos que es único entonces la ecuación tendrá una única solución. Así con este enfoque vamos desde la ecuación al funcional.

Y como seguir abundando en este tema puede ser muy técnico lo dejaremos aquí por el momento.