Problemas de frontera “no-tan-libre”

Resulta que en el Instituto de Ciencias Matemáticas hay un “Working Pizza Seminar“, (además del enlace “oficial” aquí se puede ver el enlace al blog del ICMAT) es decir, un sitio donde se dan charlas informales sobre temas de investigación actual y, además, te dan pizza para comer, y hoy he torturado hablado yo.

He hablado un poco de las cosas que he estado haciendo estos casi 3 años que llevo con la tesis (ver las diapositivas aquí PizzaWorkingSeminar). Es decir, he tratado problemas de frontera libre que surgen en el movimiento de fluidos incompresibles en medios porosos inhomogéneos. Así, por ejemplo, he explicado entre otras cosas, cuándo este tipo de olas puede tener singularidades

Y también cuando es de esperar que no.

Además he comparado diversos modelos existentes. Por ejemplo he comparado el caso homogéneo con profundidad infinita con el caso homogéneo con profundidad finita (puede argumentarse que las fronteras del dominio serían zonas de permeabilidad nula y por lo tanto el problema sería inhomogéneo… pero dejémoslo estar)

También he comparado casos con distinta permeabilidad

Todos estos problemas son interesantes, por ejemplo, de cara a la obtención de energía. En efecto, si uno quiere extraer petróleo lo que se suele hacer es inyectar agua a presión de manera que ésta lo desplaza, expulsándolo (ver aquí). Otra fuente de energía, esta vez mucho menos conocida, es la energía geotérmica (ver aquí). Ahí típicamente se tiene una zona de permeabilidad altísima, una de permeabilidad más normal y ambas se encuentran acotadas por capas impermeables. Ahí se tiene que el agua está muy caliente debido al calor propio del núcleo de la Tierra y por lo tanto puede aprovecharse para obtener electricidad.

–Nota: La portada hay que agradecérsela a Elena Hontangas Martínez :-)

–Nota 2: Parece mentira la cantidad de cuadros que hay dedicados exclusivamente a las olas. Será la única cosa que tengan en común matemáticos y artistas en sus respectivos trabajos…

Problemas de frontera “no-tan-libre” en dinámica de fluidos: las diferencias

En esta entrada tratamos de presentar de manera sencilla la siguiente pregunta

¿Cómo de importante es el lecho marino para las olas en la superficie?

Así tenemos que estudiar el problema de la evolución de la interfase entre dos fluidos cuando dichos fluidos se encuentran en un medio poroso acotado y, tras hacer unas simulaciones para ver por dónde iban los tiros, dimos los primeros pasos en el estudio matemático del problema. Sin embargo, pese a que en las simulaciones observamos grandes diferencias en los primeros resultados matemáticamente rigurosos no capturamos esos fenómenos.

La primera pregunta que nos hacemos es ¿cuál es la evolución de la amplitud máxima de la ola? Para ellos lo que hacemos es estudiar

Lo que conseguimos probar es

o, lo que es lo mismo, que la amplitud no puede crecer con el tiempo. Este resultado es idéntico al caso donde la profundidad es infinita. Sin embargo en las simulaciones habíamos visto que las diferencias a este nivel eran grandes:

Lo que ocurre es que la velocidad a la que cae la amplitud es distinta. En el caso de profundidad infinita tenemos

donde f_0(x)=f(x,0) es la ola inicial. En el caso de un medio acotado la amplitud evoluciona según

Así hemos obtenido la primera diferencia importante: la interfase en el caso de profundidad finita decae más despacio. 

Ahora cabe preguntarse ¿cómo evoluciona \max_x|\partial_x f(x,t)|? Esta cantidad nos da una idea de cómo es la longitud de onda. Sabemos que en el caso donde el medio no está acotado se tiene que

si \max_x|\partial_x f(x,0)|<1 entonces \max_x|\partial_x f(x,t)|<\max_x|\partial_x f(x,0)|\;\; \forall t>0.

En el caso de que el medio tenga profundidad finita tenemos una condición (razonablemente complicada y que escribiremos F) que involucra no sólo a \max_x|\partial_x f(x,0)| si no también a \max_x|f(x,0)|:

si F(\max_x|\partial_x f(x,0)|,\max_x|f(x,0)|)\leq 0 entonces \max_x|\partial_x f(x,t)|\leq\max_x|\partial_x f(x,0)|\;\; \forall t>0.

Una consecuencia de esto es que si esa condición se satisface y entonces tenemos una cota superior para \max_x|\partial_x f(x,t)| y por lo tanto la ola no puede romper.

Bueno, ahora que sabemos cuándo la interfase no rompe cabe preguntarse si hay alguna situación en la que la interfase rompa. Y efectivamente obtenemos que hay datos tales que pasa lo siguiente:

Es más, podemos probar mediante una prueba asistida con ordenador, que existen datos iniciales tales que sólo rompen cuando la profundidad es finita. Es decir, que el fondo ayuda a que las olas rompan. Y si bien hemos probado estos teoremas en el caso de fluidos moviéndose en un medio poroso estos dos últimos resultados se pueden probar gratis para el caso de las water waves, i.e. la interfase entre un fluido incompresible e irrotacional siguiendo las ecuaciones de Euler y el aire.

–Referencias:

D. Córdoba, RGB, R.Orive, The confined Muskat problem: differences with the deep water regime.

–Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 26, organizado esta vez por ZTFNews.

–Nota 2: Con esta entrada participamos también en el Carnaval de Física en su edición XXXIV que organiza Hablando de Ciencia.

Problemas de frontera “no-tan-libre” en dinámica de fluidos: primeros pasos

Decía el señor Swett Marden que

“Un guijarro en el lecho de un pobre arroyuelo puede mudar el curso de un río”.

Parece una exageración y sin duda lo es, pero sirve para que nos hagamos la siguiente pregunta:

¿Cómo de importante es el lecho marino para las olas en la superficie?

Ésta es la pregunta que tratamos de contestar en este artículo. El problema que queremos entender es, dados dos fluidos incompresibles en un medio poroso acotado, ¿cómo se comporta la interfase entre ambos y que diferencias presenta con el caso en el que el medio no esta acotado? Bueno, vamos a trasladar ese problema físico a ecuaciones en derivadas parciales. Tenemos una densidad que presenta dos valores según estemos por encima o por debajo de la interfase, que denotamos por ,

Que los fluidos sean incompresibles y se muevan en un medio poroso acotado quiere decir que el dominio espacial de los fluidos es 

y que la velocidad satisface la Ley de Darcy y la condición de incompresibilidad

Estas ecuaciones se puede trasladar a una única ecuación para la interfase:

Ahora que tenemos el problema cabe preguntarnos si el hecho de que el dominio sea S y no \mathbb{R}^2 cambia mucho la situación. Para hacernos una idea podemos hacer unas simulaciones numéricas preliminares. Para ello consideramos un dato inicial y lo hacemos evolucionar en el caso donde el medio tiene profundidad finita (caso acotado) y también en el caso en el que el medio tiene una profundidad infinita (caso no acotado). Por supuesto el resto de los parámetros físicos son los mismos en ambas evoluciones. Así observamos lo siguiente

(Si no ves bien las imágenes pincha en ellas para hacerlas más grandes)

Parece claro a la vista de estos resultados que el hecho de que el medio esté acotado o no es relevante para las olas.

Una vez que tenemos el problema propuesto tenemos que empezar a sacar teoremas :-P. Evitando tecnicismos lo primero que probamos es

1) (Existencia y unicidad) que si el fluido de arriba es más ligero que el que está abajo el problema tiene una solución.

1.b) (Existencia y unicidad 2) que si el fluido de arriba es más pesado que el de abajo pero la interfase inicial es analítica existe una solución.

2) (Efecto regularizante) que dicha solución se vuelve muy regular (analítica) para cualquier t>0 (compárese con la ecuación del calor aquí.)

De momento estos 3 teoremas son idénticos en su enunciado a los teoremas cuando la profundidad es infinita. ¿Sorprendido? Bueno, esto sólo quiere decir que para probar matemáticamente las diferencias que hemos visto en los vídeos y las imágenes anteriores tenemos que trabajar un poco más, así que sed pacientes y esperad a la siguiente entrada ;-).

Bueno, si os veis muy impacientes podéis leer (o, en su caso, releer) ésta, ésta y esta entrada.

–Referencias:

D. Córdoba, RGB, R.Orive, The confined Muskat problem: differences with the deep water regime.

–Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 26, organizado esta vez por ZTFNews.

–Nota 2: Con esta entrada participamos también en el Carnaval de Física en su edición XXXIV que organiza Hablando de Ciencia.

Euler y el problema de Basilea: La convergencia de la serie

En una entrada anterior (ver aquí) os contamos cómo Jacob Bernoulli encaró el problema de Basilea, esto es, la suma de la serie

Estamos en 1730 o 1731 y es ahora cuando hace su aparición Leonhard Euler, con su artículo De summatione innumerabilium progressionum, publicado en 1738, donde utiliza un método nuevo para aproximar esta serie. Euler parte de la serie de potencias de

La divide por -x e integra entre 0 y 1/2, obteniendo


En el lado izquierdo de esta expresión hace la sustitución y = 1-x consiguiendo  y reparando en que

se obtiene


Cada uno de los sumandos se puede integrar por partes,

Agrupando de nuevo, se consigue

Podemos ahora sustituir la serie de potencias

con lo cual queda

Ahora, Euler desprecia el producto \log(1)\log(0) y procede igualando la expresión de la derecha con el valor que se ha conseguido de la integral de la izquierda mediante el proceso anterior. De este modo llega a

Con estos manejos poco rigurosos, Euler solucionó el problema de la baja velocidad de convergencia de la serie: gracias a las potencias de dos en el numerador, los términos de la nueva serie que ha obtenido decaen mucho más rápido, y en consecuencia la convergencia de la serie es mucho mejor. Además, Euler conocía el valor de \log(2) con una gran cantidad de cifras decimales, consiguiendo así una aproximación 1.644934 que es correcta en las seis cifras decimales con la suma de sólo catorce términos de la nueva serie.

–Nota 1: Esta entrada participa en el Carnaval de Matemáticas del mes de Marzo. Ésta vez ha sido organizado por Hablando de Ciencia

–Nota 2: Para las imágenes con las fórmulas hemos usado el editor presente en esta web.

–Nota 3:  El texto anterior está basado en el artículo

Rafael Granero Belinchón, El problema de Basilea: Historia y algunas demostraciones. La Gaceta de la RSME, vol 12, num 4, pag 721-737, 2009.

Saltamontes en los Pirineos o por qué un biólogo necesita las matemáticas

En esta entrada hacemos una breve revisión de un tema que nos parece muy interesante: el efecto que tiene la bacteria wolbachia en unas subespecies particulares de saltamontes, Chorthippus parallelus parallelus y Chorthippus parallelus erythropus. La distribución de estos animalejos se solapa en los Pirineos, donde forman una zona híbrida (ZH), es decir, una región donde individuos de las dos subespecies se encuentran, se cruzan y dan lugar a descendencia híbrida, en aquellos puntos en los que la orografía y sus requerimientos ecológicos lo permiten. Esta ZH responde a un contacto secundario entre poblaciones endémicas ibéricas (Cpe) y de la Europa continental (Cpp), que se expandieron después de la última glaciación desde aquellos refugios en los que habían divergido genéticamente en alopatría, esto es, especiación por aislamiento geográfico.

Las diferencias morfológicas, fisiológicas, genéticas y de comportamiento entre estas subespecies (y sus híbridos naturales y de laboratorio) han sido intensamente estudiadas en estos últimos años, por lo que esta ZH se considera un modelo singular en Biología Evolutiva (Bella et al., 2010). Estos estudios muestran un escenario complejo, con un número considerable de causas involucradas en el origen, estructura y mantenimiento de dicha ZH y ofrecen una muy buena panorámica de la evolución “en acción”. ¡Por esto es importante e interesante!

 Por otra parte, Wolbachia es una bacteria endosimbionte obligada (esto es, sin palabras de brujo, que vive exclusivamente en el interior de las células del insecto al que infecta) que induce alteraciones en la reproducción de diversos organismos, fundamentalmente artrópodos y nematodos. Esta bacteria induce, por ejemplo, feminización de los machos o incluso su muerte selectiva. También producen incompatibilidad citoplasmática que consiste en la incapacidad de un macho infectado de tener descendencia con una hembra que no esté infectada (Serbus et al., 2008). Esto condiciona los cruzamientos entre poblaciones infectadas en distintos grado por esta bacteria, lo que se ha planteado como un posible ejemplo de “especiación por infección” (Wade, 2001).

En estudios previos hemos profundizado en la Biología de este microrganismo y hemos comprobado que en la ZH de Chorthippus genera una barrera reproductiva considerable (Zabal-aguirre et al., 2010; Bella et al., 2010), lo que apunta a que, efectivamente, esta bacteria puede promover fenómenos de especiación.

Debido a su peculiar forma de transmisión, de madres a hijos, la dinámica de la infección por Wolbachia es compleja. A su vez la forma por la cual la infección pueda condicionar los cruzamientos que se producen en una población y sus repercusiones a largo plazo son dificiles de estudiar en el laboratorio. Más aun en condiciones naturales. Es por esto. que la infección por Wolbachia ha sido modelizada matemáticamente (¡aquí aparece la caballería!) con el fin de conocer hasta qué punto esta bacteria influye en las poblaciones a las que infecta (Turelli et al., 1994; Telschow et al., 2005; 2007; Vautrin et al., 2007). 

Bien, hasta aquí el tema y la historia que hay detrás, pero ¿qué hemos hecho nosotros? Pues hemos continuando con los estudios de Vautrin et al. (2007),  implementando una variante de este modelo para analizar (i) cómo podría evolucionar la infección por Wolbachia en una población modelo de Chorthippus parallelus y por otra parte (ii) cómo influirían algunas variables ambientales, por ejemplo la temperatura, en la dinámica de la infección. Nuestro modelo sigue el siguiente esquema 

Como nos está quedando un poco largo ya, vamos a concluir con la referencia del trabajo por si alguien está interesado en abundar más:

Wolbachia infection in Chorthippus parallelus: Intra-generational frequency variation, P. Martínez-Rodríguez, R. Granero-Belinchón, F Arroyo-Yebras y J.L. Bella. (aquí hay un poster sobre este tema).

Referencias:

  1. Bella JL, Martínez-Rodríguez P, Arroyo-Yebras F, Bernal A, Sarasa J, Fernández-Calvín B, Mason PL & Zabal-Aguirre M. 2010. Wolbachia infection in the Chorthippus parallelus hybrid zone: evidence for its role as a reproductive barrier. Journal of Orthoptera Research 19 (2): 205-212
  2. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913.
  3. Serbus LR, Casper-Lindley C, Landmann F, Sullivan, W. 2008. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42: 683-707. 
  4. Telschow A, Flor M, Kobayashi Y, Hammerstein P, Werren JH. 2007. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS ONE Aug 8; 2(1):e701.
  5. Telschow A, Hammerstein P, Werren JH. 2005. The effects of Wolbachiaversus genetic incompatibilities on reinforcement and speciation. Evolution 59: 1607-1619.
  6. Vautrin E, Charles S, Genieys S, Vavre F. 2007. Evolution and invasion dynamics of multiple infections with Wolbachiainvestigated using matrix based models. J Theor Biol. 245(2):197-209.
  7. Wade MJ. 2001. Infectious speciation. Nature, 409: 675-677.
  8. Zabal-Aguirre M, Arroyo F & Bella JL. 2010. Distribution of Wolbachia infection of Chorthippus parallelus in populations within and beyond a Pyrenean hybrid zone. Heredity 104: 174–184.

–Nota: Con esta entrada participamos en el Carnaval de Biología en su décima edición organizado por Scientia y en el de Matemáticas, que organizamos nosotros.


Las matemáticas como ciencia experimental

Actualmente cuando uno piensa en problemas sin resolver en física piensa en la Teoría del Todo, en el bosón de Higgs o en los límites de validez de la mecánica cuántica. Sin embargo, existen problemas que son fáciles de entender que aún no tienen respuesta. Problemas que sólo involucran a la mecánica de Newton y que todavía no sabemos cómo atacar. Vamos a introducir el que nos ocupa con un experimento que puede ser fácilmente realizado en casa. Continue reading

Resolviendo la ecuación de ondas…

Tradicionalmente los matemáticos que trabajamos en el área de ecuaciones en derivadas parciales estudiamos problemas que vienen de procesos físicos. Es el caso de la ecuación del calor, la ecuación de Poisson o la ecuación de ondas. En esta entrada vamos a exponer dos métodos para resolver la ecuación de ondas. Estos métodos al tener un planteamiento distinto dan una información distinta. Veremos así diferencias entre pensar en las ecuaciones sólo o pensar en el fenómeno que modelizan. La ecuacion de ondas es
\displaystyle\partial_t\partial_t u=\partial_x\partial_x u,
junto a dos valores iniciales (tiene dos derivadas en tiempo) y las condiciones de contorno, que aquí tomamos dirichlet homogéneas. Esta ecuación refleja la separación del equilibrio de la cuerda en tiempo t y en el punto x.
Jean Le Rond D’Alembert demostró que si consideramos toda la recta (es decir, sin contornos) entonces podemos escribir la solución como una superposición de ondas, una que viaja hacia la derecha y otra que viaja hacia la izquierda. Estas ondas se escriben en función de los valores iniciales. Podemos hacer lo mismo en dominios acotados o semi acotados, pero es más lío.
Esta aproximación es puramente teórica, muchas ecuaciones admiten solución en forma de onda viajera (por ejemplo la de Fisher-Kolmogorov, \partial_t u=\partial_x\partial_x u +u(1-u) ). En este caso podemos esperarlo si observamos que podemos ‘factorizar’ el operador como dos operadores de transporte   Continue reading

De cuerdas y tambores, o cómo la física aparece en un problema de matemáticas

Cualquier estudiante de física tiene claro o al menos intuye cómo aparecen las matemáticas al estudiar problemas de física. Hoy vamos a hablar de cómo aparece la física en un teorema abstracto de matemáticas. Continue reading

Usando las Matemáticas en biología

Empezamos el año participando en la IX edición del Carnaval de Biología organizado por La Ciencia de la Vida. Corrientemente las personas que se dedican a la docencia tienen que oir la pregunta ¿pero esto para qué vale?. Esas preguntas normalmente se refieren a las matemáticas o la física. En esta nueva entrada en nuestro blog vamos a presentar brevemente una posible aplicación de las matemáticas, en este caso a la biología. Ni es la aplicación más útil ni la más interesante, pero es sencilla.

Las paradojas de la probabilidad

En esta nueva entrada de la serie de las paradojas (las primeras estradas son http://scientiapotentiaest.ambages.es/?p=244 y http://scientiapotentiaest.ambages.es/?p=266) nos vamos a centrar en las paradojas que vienen de la probabilidad. Y es que la probabilidad pese a ser algo bastante mencionado en la vida diaria no es entendida por mucha gente.

Voy a comenzar tratando el problema de Monty Hall. Este problema es muy divertido, porque todo el mundo al que se lo contemos dirá que es muy intuitivo. ¡El problema es que para cada uno será intuitiva una respuesta distinta!

Supongamos que estamos en un programa de estos de la tele. En este programa hay tres puertas. Una de las tres tiene un premio y las otras dos no tienen nada. La puerta que tiene el premio se elige al azar de manera equiprobable. El juego consiste en elegir una puerta. Tras nuestra elección, el presentador, que sabe dónde está el premio, abre una de las dos puertas que no hemos elegido y que no tiene nada. Tras esto nos pregunta si queremos cambiar de puerta. La pregunta viene ahora, ¿qué nos sale mejor como jugadores? ¿cambiar nuestra primera elección o dejarla estar?

Observamos que el premio no cambia de puerta mientras nosotros jugamos.

La respuesta correcta es que siempre nos sale mejor cambiar de puerta. Sí, amigos lectores, es mejor cambiar. ¿Qué no me creéis? Vamos a ver si os convenzo. Como el premio está en una de las puertas de manera equiprobable la probabilidad de que el premio se encuentre en la puerta que hemos elegido al comenzar a jugar es 1/3. Ahora el presentador abre una de las otras dos puertas sin descubrir el premio. ¿Cuál es la probabilidad de que nuestra puerta esconda el premio? LA MISMA, 1/3. Por lo tanto si cambiamos de puerta nuestra nueva elección tendrá probabilidad 2/3. Vamos a ilustrar esto un poco más mirando los posibles casos. Vamos a suponer que elegimos siempre la puerta 1, como todo es simétrico todos los casos estarán reflejados igualmente.

1) El coche está en la puerta 1.
1.a) Cambiamos de puerta y perdemos.
1.b) No cambiamos y ganamos.
2) El coche está en la puerta 2.
2.a) Cambiamos de puerta y ganamos.
2.b) No cambiamos y perdemos.
3) El coche está en la puerta 3.
3.a) Cambiamos de puerta y ganamos.
3.b) No cambiamos y perdemos.

Hagamos el recuento: Si cambiamos ganamos 2 veces frente a una que perdemos. Si no cambiamos la situación es recíproca. Como hay 3 casos posibles la probabilidad de ganar cambiando es 2/3.

Otra manera de convencerse es aumentar el número de puertas. Supongamos que tenemos 100 puertas. Entonces la probabilidad de que el premio esté en nuestra puerta es 1/100. Tras elegir, el presentador abre todas las puertas menos dos, la que tu elegiste y otra, de manera que ninguna de las abiertas mostrase el premio. Ahora parece claro que lo mejor es cambiar.

Otra paradoja que invariablemente se estudia en los cursos iniciales de probabilidad es la paradoja de los hijos (a falta de un nombre mejor en castellano). Supongamos que la probabilidad de que nazca un chico o una chica es la misma, 50%, y que el sexo de cada hijo es independiente del sexo de los demás hermanos. Vamos con el problema. La señora López tiene dos vástagos. Supongamos, a modo de calentamiento, que el hijo mayor de la señora López es un niño, ¿cuál es la probabilidad de que el menor sea niña? La respuesta, claro, es 50%. Ahora se nos plantea un problema ligeramente distinto: Supongamos que uno de los hijos de la señora López es niño, ¿cuál es la probabilidad de que el otro hijo también sea niño? ¿50%? Veamos los casos tal cuál está escrito (observando que la familia está fija para los más puntillosos) y ordenando los niños por edad:

1) Chico-chico
2) Chica-chico
3) Chico-chica

Hay 3 casos posibles y sólo 1 es el que nos preguntan. Como son equiprobables la probabilidad de que ambos hijos de la señora López sean niños es 1/3. El truco aquí está en que al decir que uno de los hijos es chico perdemos información sobre su edad. En la primera pregunta tenemos más información y podemos descartar más casos.

La probabilidad se va descubriendo un poco farragosa y “extraña” en ocasiones. Sin embargo todavía no hemos tratado la principal fuente de problemas al tratar con la probabilidad. Me refiero a la ambigüedad. Las palabras “al azar” no tienen un significado preciso y se usan con más asiduidad de la recomendable. Esto quedó claramente expuesto en la obra de J. Bertrand “Calcul des probabilités”. En este manual propuso un enunciado y dio varias respuestas al problema, todas bien lógicas y correctas. El problema era que en cada uno la definición de “al azar” era distinta. Es ahora cuando nos ponemos técnicos. En la entrada anterior ya mencionamos cosas como “medidas” de conjuntos (ver la entrada anterior). Eso nos volverá a ser útil, pues la manera matemática de dar sentido a las palabras “al azar” utiliza esas ideas. En matemáticas un “espacio de probabilidad” es un espacio de sucesos posibles en nuestro experimento, una manera de agruparlos en conjuntos y una manera de “medir la probabilidad” cada uno de estos conjuntos de sucesos. Claro está que la definición precisa es mucho más técnica. Así la idea que quiero dejaros es que esas tres cosas abstractas es lo que da sentido a la palabra “azar”.

El ejemplo que más me gusta de esto es la paradoja de Bertrand. Consideremos un círculo con un triángulo equilatero inscrito. La pregunta ahora es ¿cuál es la probabilidad de que una cuerda trazada “al azar” sea más larga que los lados del triángulo? Veamos las tres maneras clásicas de calcular dicha probabilidad:

1) Supongamos, sin pérdida de generalidad, que uno de los extremos de la cuerda coincide con uno de los vértices del triángulo. En ese caso al quedar la circunferencia dividida en 3 trozos iguales y coincidir uno con el conjunto donde la cuerda es más larga que el lado del triángulo concluimos que la probabilidad pedida es 1/3. Aquí el espacio de sucesos es el conjunto de puntos de la circunferencia y la medida de probabilidad asociada es la longitud del arco considerado dividido la longitud total de la circunferencia.

2) Consideremos ahora un radio perpendicular a uno de los lados del triángulo. Esto de nuevo nos facilita la vida pero no perdemos generalidad. Ahora trazamos la cuerda de manera perpendicular a dicho radio por un punto aleatorio del mismo. La probabilidad de que la cuerda sea mas larga que el lado es justamente 1/2 si la trazamos con estas reglas. Aquí el espacio de sucesos es el conjunto de puntos del radio y la medida de probabilidad es la longitud del segmento considerado dividido por la longitud total.

3) Ahora nuestro experimento consiste en elegir el punto medio de la cuerda. Si trazamos la cuerda con esta regla la probabilidad de que la longitud de la cuerda sea mayor que la del lado del triángulo es la misma que la probabilidad de que el punto medio de la cuerda esté en un círculo concentrico inscrito en el triángulo de radio la mitad (y área 1/4 del área del círculo original). Por lo tanto la probabilidad será 1/4. Aquí el espacio de sucesos es el conjunto de puntos del círculo y la medida de probabilidad es el área del conjunto de puntos considerado dividido entre el área del círculo original.

La paradoja aquí estriba en que para una pregunta tenemos tres respuestas. Además, eligiendo la definición de “azar” todas son correctas.

Creo que ha quedado claro que cuando decimos cosas como “aleatorio” o “al azar” no estamos en realidad diciendo nada y que debemos entrar, aunque no queramos, en tecnicismos para evitar este tipo de paradojas.

— Nota: Las imágenes han sido obtenidas de la Wikipedia en inglés

— Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 2.6 (albergado por “La vaca esférica” , http://lavacaesferica.com/).