Desde hace ya unos años me dedico al estudio de átomos de Rydberg. Estos átomos poseen propiedades exageradas (como periodos de semivida muy largos, polarizabilidades enormes, …) e interactúan muy fuertemente entre sí gracias a las interacciones dipolo-dipolo entre ellos. Es por esto que han adquirido mucho interes en las últimas décadas como potencial plataforma para implementar diferentes operaciones en computación y simulación cuanticas. El Sr. Rydberg, que da nombre a este típo de átomos, va a tener un papel fundamental en el descubrimiento, a finales del s. XIX y principios del s.XX, de las leyes que gobiernan el mundo cuántico, y es de él de quien vamos a hablar hoy.
Category Archives: Física
Simulación cuántica con átomos Rydberg – un experimento en París
Ah, Paris! (dígase en acento francés). Cuna de la baguette, del cabaret, y siguiendo al cabaret en orden de importancia, ahora también de un simulador cuántico simple que usa átomos de Rydberg. Así es: unos amigos de l’Institut d’Optique cerca de París acaban de publicar en la revista Nature (una de las más prestigiosas revistas científicas) un estudio en el que demuestran un simulador cuántico “básico” utilizando átomos de Rydberg.
¿Qué es un simulador cuántico? En el mundillo de la física cuántica, Continue reading
El enigma de Hooke
Es posible que a los que hayáis estudiado física os suene el nombre de Hooke por su famosa ley (“Ley de la elasticidad de Hooke”) que relaciona de forma lineal el alargamiento de un material () y la fuerza aplicada ():
.
En 1675, Robert Hooke publicó “la verdadera forma matemática y mecánica” que tiene que tener un arco ideal. Pero hizo esto escribiéndolo como un anagrama:
abcccddeeeeefggiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux
Pero… ¿qué es la óptica?
La óptica es la rama de la ciencia que se encarga del estudio de la luz en todas sus formas.
Esto no quiere decir, en cualquier modo, que la óptica sea una cosa cerrada: como casi todos los ámbitos de la ciencia, tiene ramificaciones e interconexiones con otras áreas, y es bastante extraño (a menos que estés en la universidad, donde están empecinados en compartimentar todo saber) que se presente aislada, extraña al resto de materias.
Además, tampoco es posible separar completamente cada una de las ramas de la óptica a nivel histórico, pues aunque algunos avances (la óptica cuántica, por ejemplo) sean más modernos, en realidad se puede ver como si fuese un cuerpo del conocimiento al que se han hecho diversas aproximaciones.
Sin embargo, si cambiamos la manera de acercarnos al tema , casi siempre variarán las técnicas utilizadas y la clase de problemas que se pueden tratar dentro de ese marco de referencia.
La siguiente lista, lejos de ser extensiva, es un mero acercamiento a las palabras y los métodos que se utilizan en cada una de las ópticas. Si hay tiempo, escribiré sobre cada una de ellas independientemente, aunque la que más conozco (y de la que más preguntas tengo) es la óptica cuántica.
Óptica geométrica
Parte de la idea de que “La luz se transmite en linea recta”. Es la rama más antigua de la óptica, y estudia a un nivel básico, con leyes prácticamente “empíricas” la reflexión y la refracción de las ondas de luz en medios materiales.
Sirve, usualmente, cuando la longitud de onda es muy pequeña en comparación con el resto de distancias en el problema y cuando los ángulos de incidencia a los distintos elementos que atraviesa la luz son pequeños (aproximación eikonal).
Óptica electromagnética
Surge al estudiar las soluciones de las ecuaciones de Maxwell para el campo electromagnético (PDEs). Por ello, se trata normalmente del estudio de la propagación clásica de ondas armónicas en medios materiales.
Toma la refracción, reflexión y difracción desde el punto de vista microscópico de los materiales. Aparecen las funciones de Green (propagadores) al resolver las ecuaciones de Maxwell. Tiene aplicaciones en ingeniería (telescopios, microscopios,…) , así como en optometría.
Cabe decir que una gran parte de la óptica electromagnética es el estudio de la luz como una “onda” en vez de corpúsculo. Esto ya lo hizo Newton, entre otros sitios, en su “Opticks”
Una de las cosas más interesantes es la aparición de la frecuencia, la amplitud y la polarización en la descripción de las ondas. La fase resulta importante al considerar difracción, aunque también se puede ver en la reflexión y la refracción teniendo en cuenta las condiciones de borde en las ecuaciones de Maxwell.
Óptica estadística
Surge al considerar el campo electromagnético como algo menos “idealizado”: supone distribuciones estocásticas para el campo electromagnético y la emisión de luz como un proceso aleatorio. Esto resulta más correcto cuando hay fenómenos en los que existe coherencia. Estudia fenómenos como la holografía o la interferometría.
La frecuencia y la fase toman un papel fundamental, y se trata de distribuciones de las que uno tiene que obtener “momentos”. La correlación entre puntos del campo EM es importante (al menos hasta segundo orden en intensidad).
Óptica cuántica
Tanto emisores como receptores tienen características que obedecen a las leyes de la física cuántica. Una de esas características fundamentales es la de la interferencia entre procesos debido a la “indistinguibilidad de las partículas”.
Se utilizan técnicas que van desde las PDEs hasta métodos algebráicos en teoría de grupos (operaciones de creación y aniquilación, momento angular, …). Tiene aplicaciones en espectroscopía, interferometría, … Obviamente, dado que tenemos que describir la propagación en medios que están gobernados por las leyes de la física cuántica, podemos encontrar relación física atómica o con la física de estado sólido y de materia condensada.
¿Por qué podemos ver los haces láser?
En los medios gráficos se nos muestra, de vez en cuando, luz laser como si fuese un haz de luz que cruza el aire (más o menos) en linea recta, hasta que choca con un espejo que lo haga cambiar de dirección, o hasta que se dirige a un objeto al que es opaco, que lo absorbe.
Sin embargo, el hecho de que nosotros “veamos” ese haz quiere decir que hay fotones que han tomado otro camino (que no es la linea recta) y se han dirigido a nuestros ojos. ¿Cómo es esto posible? (la respuesta, después del salto)
Almacenamiento y control de fotones ópticos
Autores: David Szwer y Hannes Busche,
Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics,
Durham University, UK.
Traducción de David Paredes
(Este artículo apareció originalmente en el blog 2Physics, y trata sobre el artículo a Maxwell et al. Phys. Rev. Lett., 110, 103001 (2013). Abstract. [versión libre en el arXiv])
Resumen:
El Procesado y la Comunicación cuánticas necesitan portadores robustos de información cuántica (qubits) y los fotones en frecuencias ópticas son candidatos idóneos: la luz se puede transmitir fácilmente utilizando tecnologías como las fibras ópticas, y casi no interactúa con otros fotones o el ambiente. Sin embargo, para procesar la información que portan se necesitan interacciones controlables entre los fotones que transportan esa información. Físicos en la universidad de Durham en el Reino Unido han combinado dos técnicas avanzadas de óptica cuántica con un sintetizador de microondas para controlar las interacciones entre fotones individuales [1,2]. Los fotones son almacenados en una nube de átomos de rubidio en forma de “polaritones Rydberg”. Gracias a que las interacciones entre ellos son de largo alcance, solamente un fotón puede ser almacenado en un volumen de unos cuantos micrones cúbicos, limitando el número total de fotones almacenados a unos tres. Las microondas manipulan los fotones mientras que están almacenados, forzándolos a interactuar en maneras cuyos detalles aún no se comprenden completamente. La habilidad para inducir interacciones al nivel de fotones únicos, y de controlarlas utilizando microondas, podría ofrecernos un nuevo punto de vista en el desarrollo de futuras tecnologías cuánticas.
La ecuación de Burgers
En este blog sabéis que periódicamente ponemos entradas de física, o mejor aún, de cómo las matemáticas se utilizan para explicar cosas de física (ver por ejemplo ésta, ésta y ésta otra entrada). La que colgamos hoy es de esas. Además ésta estaba pendiente porque en una entrada sobre varios modelos de las ecuaciones de Euler dije que iba a escribir sobre la ecuación de Burgers. Pues bien, aquí está.
La ecuación de Burgers no viscosa (que toma su nombre de J.M. Burgers) se escribe de la siguiente manera
Se trata de una ecuación de primer orden no lineal y suele ser el primer ejemplo de ecuación no lineal que se pone en los libros de texto (para una lectura rápida sobre las propiedades de algunas ecuaciones en derivadas parciales sencillas leed esto). Se trata además de la primera ecuación que surge de manera natural cuando uno quiere entender las ecuaciones de Euler y también “refleja” (más o menos) el comportamiento de una ola (ver un artículo reciente sobre este tipo de ecuaciones aquí).
Si pasamos esquivando el cuestión de la existencia o no de solución para dicho problema (1) y directamente suponemos que existe tal solución y que además es una función “suave”, i.e., con tantas derivadas como nos hagan falta, podemos obtener una propiedad importante de manera muy sencilla. Supongamos que tenemos una solución que tiene, al menos, dos derivadas en , y supongamos además que dicha solución se va muy rápido a cero cuando se hace muy grande. Dicha solución tendrá un mínimo (o ínfimo), y un máximo (o supremo) y sus posiciones dependerán del tiempo. Como la función tiende a cero en el infinito estos valores se alcanzan (es decir, no son ínfimos/supremos). Denotemos el punto donde alcanza su mínimo como y el punto donde alcanza su máximo como . Por lo tanto, fijo ,
y
y
y obtenemos que tanto el máximo como el mínimo del dato inicial se conservan,
y
Si ahora repetimos el argumento para la evolución de obtenemos, si es el punto de mínimo, la siguiente ecuación
Ahora observamos que (2) es una EDO que se puede resolver explícitamente (¿sabrías cómo hacerlo?)
y tenemos que, si ,
Veamos unas simulaciones para entender bien lo que pasa aquí:
Esto es un ejemplo de singularidad. Tampoco debería sorprendernos, pues esta ecuación aparece relacionada con olas y parece reflejar el hecho de que las olas “rompen”.
¿Qué pasa si ahora añadimos una pequeña viscosidad con la forma de un laplaciano? (Esta difusión puede generalizarse, por ejemplo como en [2])
Esta ecuación se conoce como Ecuación de Burgers viscosa y puede entenderse como un modelo (en realidad una caricatura) de la ecuación de Navier-Stokes. Bueno, ahora la cuenta anterior no es tan sencilla, porque el término difusivo, el laplaciano, tiene signo “bueno”, es decir, se opone a los crecimientos descontrolados como los que se veían en el vídeo anterior. De hecho, usando la transformación de Cole-Hopf (ver aquí) se puede ver que esta ecuación tiene existencia global para cualquier valor de .
De esta manera, el vídeo ahora es
–Referencias:
1) Vincent Duchene, “Decoupled and unidirectional asymptotic models for the propagation of internal waves”, preprint Arxiv, http://arxiv.org/abs/1208.6394.
2) RGB y José Manuel Moreno, “La ecuación de Burgers como un paso previo al estudio de los fluidos incompresibles”, La Gaceta de la RSME, vol 15, num 3, pag, 489-512, 2012. ArXiv preprint http://arxiv.org/abs/1105.5990.
–Nota: Como lo de aproximar soluciones de EDPs es algo muy útil, dedicaremos una entrada próximamente a un método sencillo que produce muy buenos resultados.
Transparencia inducida electromagnéticamente (2/2)
En la anterior entrada hemos hablado un poco de qué es la transparencia inducida electromagnéticamente (EIT) y cómo el medio se puede hacer transparente a luz resonante con frecuencia utilizando luz de otra frecuencia diferente , a la que llamamos “haz de control”. Allí mencionamos que, dentro del medio, esa luz se convierte en una “onda espín”, en una excitación del medio, que depende de la intensidad del haz de control.
En esta segunda entrada, vamos a intentar responder a las siguientes preguntas: ¿Qué es una onda espín? ¿En qué modo depende la onda espín del haz de control? y, por último ¿por qué es esto tan relevante para la computación cuántica?
Transparencia inducida electromagnéticamente (1/2)
Pongamos que tenemos una lámina de un material opaco, digamos un plástico, y que intentamos hacer pasar luz roja a través de él. Dado que es opaco, la luz no podrá pasa, así que detrás de la lámina no veremos luz roja.
Sin embargo, supongamos que ese material presenta transparencia inducida electromagnéticamente (EIT). Entonces, usando otra luz particular, digamos de color azul, podemos hacer que el material sea transparente a la luz roja: esto es, si iluminamos el material con luz roja y azul podremos ver luz roja que ha atravesado el material. Extraño, ¿no?.
Modelizando el ala de un avión
Voy a tratar de explicar un modelo de cómo se comporta el aire (o en general un fluido), considerando que es incompresible.
Las ecuaciones de Navier-Stokes son la segunda ley de Newton (F=ma) para el caso de los medios continuos. Estas ecuaciones son parabólicas de orden 2. Las incógnitas son la presión y el campo de velocidades. La presión nos refleja una fuerza interna entre las partículas del fluido. Hay un término, el laplaciano, que nos refleja la difusión que viene del roce entre las partículas producido por la viscosidad. Lo ‘malo’ que tienen es que son muy, muy difíciles. En un caso simplificado son uno de los problemas del milenio, esos que si resuelves te pagan un millón de dólares de los EEUU. Para poder manejarse en estos temas se hacen más o menos hipótesis que nos simplifican mucho la vida, pero ¿hasta dónde estamos perdiendo en verosimilitud?.
Hay varias maneras de simplificar las ecuaciones, y las que he explicado arriba no son las más generales pues también se podrían considerar la temperatura, la densidad… como incógnitas. La primera manera es decir que tu fluido no es viscoso, en cuyo caso tus ecuaciones son hiperbólicas de orden uno. Se llaman ecuaciones de Euler. Estas también son muy complicadas y tampoco se conoce solución. No son un problema del milenio, pero si que darán la gloria al que lo saque. No son estas las ecuaciones de las que voy a hablar, sino otras más sencillas.
Voy a suponer que la temperatura es constante, así como la densidad. Además nuestro fluido es no viscoso, estacionario, es decir que no cambia con el tiempo. Supongamos también que nuestro fluido se mueve en dos dimensiones solamente, entonces podemos encontrar otra función, determinada de forma única por la primera que nos dará las trayectorias del fluido. Notaremos esta función por . En este caso todo es muchísimo más sencillo. Estamos hablando de flujos potenciales. En estos la velocidad viene dada como el gradiente de una cierta función incógnita, , por lo que podemos pasar de un sistema a una sola ecuación.
Además es una ecuación muy sencillita. Definimos la circulación como la integral a lo largo de nuestro perfil (el ala del avión) de la velocidad. Es lo mismo que integrar el rotacional de la velocidad en el interior del ala. Entonces podemos demostrar que sólo hay sustentación si la circulación es distinta de cero. Pero, con las hipótesis que hemos hecho, si añadimos que el aire muy lejos del perfil no haga remolinos, entonces tenemos que la circulación será cero, pues esta sólo puede moverse, no aparecer si antes no había (estamos en 2D y no hay viscosidad).
También podemos darnos cuenta de la paradoja de D’Alembert, que dice que en un fluido potencial y estacionario no hay resistencia aerodinámica.
Esto es bastante contradictorio con lo que vemos día a día, que los aviones vuelan y que si vamos contra el viento nos cuesta más.
La solución a estas paradojas es que nuestro fluido no es potencial, por lo menos no lo es en algunas zonas. Un fluido potencial no puede desarrollar turbulencia, y en el caso de la resistencia aerodinámica, es ésta la culpable de que nos cueste más (junto con la viscosidad). Pasa lo mismo con la sustentación. Para que haya sustentación, la circulación ha de ser distinta de cero.
Para avanzar en la comprensión de estos fenómenos hemos de separar el fluido en trozos, un trozo externo, donde podríamos habla de flujo potencial, y un flujo cercano al objeto inmerso en el fluido (el ala) y la parte de atrás de este donde los efectos de la viscosidad hacen que la vorticidad cambie localmente y tengamos circulación y turbulencias. Esto es el fenómeno de capa límite, que dice que lo que pasa es que los efectos de la viscosidad hay que contarlos en una zona muy pequeña alrededor del perfil y en la estela (zona de capa límite desprendida). Para ver unos dibujos dejo las soluciones calculadas con FREEfem++ en ambos casos (viscoso y potencial) y considerando un perfil circular.