Las paradojas de la probabilidad

En esta nueva entrada de la serie de las paradojas (las primeras estradas son http://scientiapotentiaest.ambages.es/?p=244 y http://scientiapotentiaest.ambages.es/?p=266) nos vamos a centrar en las paradojas que vienen de la probabilidad. Y es que la probabilidad pese a ser algo bastante mencionado en la vida diaria no es entendida por mucha gente.

Voy a comenzar tratando el problema de Monty Hall. Este problema es muy divertido, porque todo el mundo al que se lo contemos dirá que es muy intuitivo. ¡El problema es que para cada uno será intuitiva una respuesta distinta!

Supongamos que estamos en un programa de estos de la tele. En este programa hay tres puertas. Una de las tres tiene un premio y las otras dos no tienen nada. La puerta que tiene el premio se elige al azar de manera equiprobable. El juego consiste en elegir una puerta. Tras nuestra elección, el presentador, que sabe dónde está el premio, abre una de las dos puertas que no hemos elegido y que no tiene nada. Tras esto nos pregunta si queremos cambiar de puerta. La pregunta viene ahora, ¿qué nos sale mejor como jugadores? ¿cambiar nuestra primera elección o dejarla estar?

Observamos que el premio no cambia de puerta mientras nosotros jugamos.

La respuesta correcta es que siempre nos sale mejor cambiar de puerta. Sí, amigos lectores, es mejor cambiar. ¿Qué no me creéis? Vamos a ver si os convenzo. Como el premio está en una de las puertas de manera equiprobable la probabilidad de que el premio se encuentre en la puerta que hemos elegido al comenzar a jugar es 1/3. Ahora el presentador abre una de las otras dos puertas sin descubrir el premio. ¿Cuál es la probabilidad de que nuestra puerta esconda el premio? LA MISMA, 1/3. Por lo tanto si cambiamos de puerta nuestra nueva elección tendrá probabilidad 2/3. Vamos a ilustrar esto un poco más mirando los posibles casos. Vamos a suponer que elegimos siempre la puerta 1, como todo es simétrico todos los casos estarán reflejados igualmente.

1) El coche está en la puerta 1.
1.a) Cambiamos de puerta y perdemos.
1.b) No cambiamos y ganamos.
2) El coche está en la puerta 2.
2.a) Cambiamos de puerta y ganamos.
2.b) No cambiamos y perdemos.
3) El coche está en la puerta 3.
3.a) Cambiamos de puerta y ganamos.
3.b) No cambiamos y perdemos.

Hagamos el recuento: Si cambiamos ganamos 2 veces frente a una que perdemos. Si no cambiamos la situación es recíproca. Como hay 3 casos posibles la probabilidad de ganar cambiando es 2/3.

Otra manera de convencerse es aumentar el número de puertas. Supongamos que tenemos 100 puertas. Entonces la probabilidad de que el premio esté en nuestra puerta es 1/100. Tras elegir, el presentador abre todas las puertas menos dos, la que tu elegiste y otra, de manera que ninguna de las abiertas mostrase el premio. Ahora parece claro que lo mejor es cambiar.

Otra paradoja que invariablemente se estudia en los cursos iniciales de probabilidad es la paradoja de los hijos (a falta de un nombre mejor en castellano). Supongamos que la probabilidad de que nazca un chico o una chica es la misma, 50%, y que el sexo de cada hijo es independiente del sexo de los demás hermanos. Vamos con el problema. La señora López tiene dos vástagos. Supongamos, a modo de calentamiento, que el hijo mayor de la señora López es un niño, ¿cuál es la probabilidad de que el menor sea niña? La respuesta, claro, es 50%. Ahora se nos plantea un problema ligeramente distinto: Supongamos que uno de los hijos de la señora López es niño, ¿cuál es la probabilidad de que el otro hijo también sea niño? ¿50%? Veamos los casos tal cuál está escrito (observando que la familia está fija para los más puntillosos) y ordenando los niños por edad:

1) Chico-chico
2) Chica-chico
3) Chico-chica

Hay 3 casos posibles y sólo 1 es el que nos preguntan. Como son equiprobables la probabilidad de que ambos hijos de la señora López sean niños es 1/3. El truco aquí está en que al decir que uno de los hijos es chico perdemos información sobre su edad. En la primera pregunta tenemos más información y podemos descartar más casos.

La probabilidad se va descubriendo un poco farragosa y “extraña” en ocasiones. Sin embargo todavía no hemos tratado la principal fuente de problemas al tratar con la probabilidad. Me refiero a la ambigüedad. Las palabras “al azar” no tienen un significado preciso y se usan con más asiduidad de la recomendable. Esto quedó claramente expuesto en la obra de J. Bertrand “Calcul des probabilités”. En este manual propuso un enunciado y dio varias respuestas al problema, todas bien lógicas y correctas. El problema era que en cada uno la definición de “al azar” era distinta. Es ahora cuando nos ponemos técnicos. En la entrada anterior ya mencionamos cosas como “medidas” de conjuntos (ver la entrada anterior). Eso nos volverá a ser útil, pues la manera matemática de dar sentido a las palabras “al azar” utiliza esas ideas. En matemáticas un “espacio de probabilidad” es un espacio de sucesos posibles en nuestro experimento, una manera de agruparlos en conjuntos y una manera de “medir la probabilidad” cada uno de estos conjuntos de sucesos. Claro está que la definición precisa es mucho más técnica. Así la idea que quiero dejaros es que esas tres cosas abstractas es lo que da sentido a la palabra “azar”.

El ejemplo que más me gusta de esto es la paradoja de Bertrand. Consideremos un círculo con un triángulo equilatero inscrito. La pregunta ahora es ¿cuál es la probabilidad de que una cuerda trazada “al azar” sea más larga que los lados del triángulo? Veamos las tres maneras clásicas de calcular dicha probabilidad:

1) Supongamos, sin pérdida de generalidad, que uno de los extremos de la cuerda coincide con uno de los vértices del triángulo. En ese caso al quedar la circunferencia dividida en 3 trozos iguales y coincidir uno con el conjunto donde la cuerda es más larga que el lado del triángulo concluimos que la probabilidad pedida es 1/3. Aquí el espacio de sucesos es el conjunto de puntos de la circunferencia y la medida de probabilidad asociada es la longitud del arco considerado dividido la longitud total de la circunferencia.

2) Consideremos ahora un radio perpendicular a uno de los lados del triángulo. Esto de nuevo nos facilita la vida pero no perdemos generalidad. Ahora trazamos la cuerda de manera perpendicular a dicho radio por un punto aleatorio del mismo. La probabilidad de que la cuerda sea mas larga que el lado es justamente 1/2 si la trazamos con estas reglas. Aquí el espacio de sucesos es el conjunto de puntos del radio y la medida de probabilidad es la longitud del segmento considerado dividido por la longitud total.

3) Ahora nuestro experimento consiste en elegir el punto medio de la cuerda. Si trazamos la cuerda con esta regla la probabilidad de que la longitud de la cuerda sea mayor que la del lado del triángulo es la misma que la probabilidad de que el punto medio de la cuerda esté en un círculo concentrico inscrito en el triángulo de radio la mitad (y área 1/4 del área del círculo original). Por lo tanto la probabilidad será 1/4. Aquí el espacio de sucesos es el conjunto de puntos del círculo y la medida de probabilidad es el área del conjunto de puntos considerado dividido entre el área del círculo original.

La paradoja aquí estriba en que para una pregunta tenemos tres respuestas. Además, eligiendo la definición de “azar” todas son correctas.

Creo que ha quedado claro que cuando decimos cosas como “aleatorio” o “al azar” no estamos en realidad diciendo nada y que debemos entrar, aunque no queramos, en tecnicismos para evitar este tipo de paradojas.

— Nota: Las imágenes han sido obtenidas de la Wikipedia en inglés

— Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 2.6 (albergado por “La vaca esférica” , http://lavacaesferica.com/).

La teoría del caos y el efecto mariposa

Para empezar sólo la voy a llamar teoría del caos en el título. Era para captar al atención, y este nombre lo consigue.  Es mejor decirle ‘de los sistemas dinámicos’ o algo así. Por desgracia, la fama de todo esto ha hecho que se encuentre de todo en internet. Por ejemplo hoy he visto una página donde se afirmaba que el efecto mariposa era los efectos de… ¡viajar en el tiempo! Impresionante. Y es que aficionarse a la ciencia está bien, pero sin perder el norte.

Por el nombre (caos) hay gente que piensa que un comportamiento caótico es aleatorio e impredecible. Vamos, un cisco bueno. Lo cierto es que lo primero es falso y lo segundo, como casi siempre, es ‘depende’.

El caos es ‘determinista‘, que quiere decir que dado un estado inicial, el comportamiento a largo plazo está determinado sin error posible y es único. Esto es, que está ‘determinado’ por el estado inicial. Consideremos un sistema discreto, es decir, una ley de recurrencia, por ejemplo la también famosa ley de Fibonacci, pero sin estados iniciales. Entonces la dinámica (la ley que sigue el sistema) es f_n=f_{n-1}+f_{n-2} Dados dos estados iniciales, por ejemplo 1,1 conocemos todos los valores de f. Además, si realizamos el experimento dos veces con los mismos valores iniciales los resultados serán idénticos. Eso quiere decir determinista.

Diferentes son los sistemas probabilistas. En estos sistemas hay un componente azaroso que impide conocer el largo plazo. Pero lo que de verdad los caracteriza es que para el mismo dato inicial podemos obtener resultados de los experimentos completamente distintos. Por ejemplo (muy poco válido como veremos ahora), una moneda. Consideramos el experimento tirar una vez la moneda. A mismas condiciones unas veces saldrá cara y otras cruz. Digo que es un mal ejemplo, porque este modelo es probabilista sólo por nuestro desconocimiento, pues si conociésemos la dirección y la fuerza exactas del lanzamiento sabríamos si saldrá cara o cruz. La gravedad es determinista. Esto nos podría llevar a pensar hasta que punto existe el azar, o si puede ser la probabilidad sólo una herramienta útil dada nuestra ignoracia de la realidad completa. Pensar en un mundo completamente determinista ya lo hizo Laplace. Y tiene una frase famosa por ello.

Ya hemos entendido la palabra determinista (si no es así tenéis que releerlo). Veamos el ‘depende’.

Es aquí donde entra el ‘efecto mariposa‘, que es el nombre que le puso Edward Lorenz a la sensibilidad a los datos iniciales. ¿A que es exótico?. Creo que su idea era atraer la atención hacia su conferencia. El efecto mariposa viene a decir que cualquier cambio minúsculo acaba teniendo repercusiones enormes, y por lo tanto nuestra aproximación (predicción) será una chapuza completa. O exóticamente

Si una mariposa batiese sus alas en Pekín provocaría un tornado en Texas un mes siguiente.

O algo parecido. Bueno, no matéis a todas las mariposas para evitar los tornados. No hay que cogerlo tan literal. En realidad hay que hacer una interpretación de casi todo. Las mariposas no provocan tornados. Los tornados surgen de un conjunto de factores que los hacen posibles, esto es, todas las mariposas del mundo, nuestros aviones, nosotros corriendo, la humedad en mi pueblo… Ahora, si pudiesemos tener dos planetas Tierra, con exactamente las mismas condiciones salvo una mariposa, entonces los climas serían distintos. ¿En qué sentido (ahora viene el depende)?. Bueno, no distintos en el sentido de que en Valencia helase por las noches. Llamemos a este tipo de cambios bruscos cambios de tipo 1. No, serían cambios en el orden y en el tiempo (tiempo-temporal, no tiempo-clima). Por ejemplo, un tornado que apareciese en un planeta el día 1 de Julio en el otro no aparecería y aparecería uno el 18 de Agosto. O una tormenta en mi pueblo no caería, caería en Albaladejo. Estos son los cambios de tipo 2.

Los cambios de tipo 1 son cambios bruscos que no quiere nadie. Estos cambios van asociados a cambios muy profundos en el sistema. Ahora tengo que ponerme técnico, lo siento. En un sistema dinámico, hay asociado un espacio de fases, que es un sitio donde viven las características del sistema. En este lugar de posiciones y velocidades (si es físico el sistema) o en el caso del clima de humedades y temperaturas, existen ‘cosas’ que atraen. Además son cosas raras normalmente en los casos caóticos. De hecho son fractales. Como no tenían muchas ganas de buscar un nombre exótico los llamaron ‘atractores extraños’. Posee la virtud de la simpleza. Los comportamientos del sistema cambian bruscamente entre unos atractores y otros (el mismo sistema puede tener varios al variar los parámetros). Es decir, para seguir con el ejemplo del clima, tenemos nuestro porcentaje de CO2 en la atmósfera en un nivel x. Nuestro sistema entonces tiene x como un parámetro. Si aumenta el porcentaje, digamos a 2x entonces nuestro sistema cambia de parámetro, pudiéndose producir un cambio de atractor, con el consiguiente nevazo en la Malvarrosa. Podemos ver esto del plano de fases y los atractores como un par de platos hondos y una aceituna, tenemos los platos juntos de manera que la aceituna reposa en el borde de ellos. La aceituna caerá rodando a uno de ellos. Los platos son los atractores, el conjunto de los dos es el espacio de fases y nuestra aceituna es el estado del sistema.

Dicho esto, está claro que hay que evitar los cambios de tipo 1. Los de tipo 2 son mejores en general.

Resumiendo, si tenemos un estado inicial, este nos viene dado por un conjunto de mediciones que hemos hecho. Estas mediciones no tienen (ni pueden) tener una precisión infinita (en cuyo caso el estado del sistema estaría determinado siempre) por lo que aparecen pequeños errores entre nuestro estado inicial para realizar los cálculos y la predicción y el verdadero estado inicial. Es decir, en nuestro espacio de fases hay dos puntos distintos, el de las medidas y el real. Al ser el comportamiento caótico, al avanzar el tiempo las curvas que tracen estos puntos se separarán. Y consecuentemente nuestra predicción a largo tiempo fallará.

Concluyendo, el ‘depende’ significa que podemos predecir el corto (quizá muy corto) plazo con poco error y podemos predecir si habrá cambio de atractor o no. Esto es comparable a decir que en Cuenca en Julio hará calor pero no poder decir habrá 36º C a las 15 de la tarde del día 2 de Julio. Decir que hará calor es decir el atractor, decir la temperatura exacta a la hora cabal es una predicción a largo plazo.

El comportamiento caótico existe, además es muy común. Aparece en todas las ramas del saber, física, biología medicina… Necesita algunas cosas para que se pueda dar. El sistema de ecuaciones diferenciales ha de ser no lineal y tener una dimensión mayor que dos. Pero esto no es nada raro en la cruda realidad fuera de las ‘oscilaciones pequeñas’ y cosas por el estilo.

He hecho un programita en Matlab para ver la sensibilidad a los datos iniciales:

function [x1,y1,z1,Y1,x2,y2,z2,Y2]=caoslogistica
%Este codigo estudia varios casos de 2 sistemas dinamicos discretos
%que conducen a un comportamiento caotico para ciertos valores
%de un parametro. Asi mismo dibuja unos diagramas de bifurcacion.
%Para el primer caso se puede poner k=4 para ver el comportamiento
%caotico. Para el segundo se puede poner k=1.6.
%Rafael Granero Belinchon.

disp(‘Comenzamos con el sistema dinamico Xn+1=k1Xn(1-Xn)’)
disp(‘—Primer Experimento:—‘)
k1=input(‘Dame una constante entre 0 y 4:’);
x0=input(‘Dame un valor inicial entre 0 y 1:’);
x1(1)=x0;
for i=1:100
x1(i+1)=k1*x1(i)*(1-x1(i));
end
disp(‘—Segundo Experimento:—‘)
k2=input(‘Dame una constante entre 0 y 4:’);
y0=input(‘Dame un valor inicial entre 0 y 1:’);
y1(1)=y0;
for i=1:100
y1(i+1)=k2*y1(i)*(1-y1(i));
end
disp(‘—Tercer Experimento:—‘)
k3=input(‘Dame una constante entre 0 y 4:’);
z0=input(‘Dame un valor inicial entre 0 y 1:’);
z1(1)=z0;
for i=1:100
z1(i+1)=k3*z1(i)*(1-z1(i));
end
subplot(4,1,1)
plot(x1);title(‘Primer experimento’);
subplot(4,1,2)
plot(y1);title(‘Segundo experimento’);
subplot(4,1,3)
plot(z1);title(‘Tercer experimento’);
subplot(4,1,4)
plot(z1,’r’);
hold on
plot(x1);
hold on
plot(y1,’k’);title(‘Todos juntos’);
hold off
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Comenzamos con el sistema dinamico Xn+1=k1Xn^2-1’)
disp(‘—Primer Experimento:—‘)
k1=input(‘Dame una constante entre 0 y 4:’);
x0=input(‘Dame un valor inicial entre 0 y 1:’);
x2(1)=x0;
for i=1:100
x2(i+1)=k1*x2(i)^2-1;
end
disp(‘—Segundo Experimento:—‘)
k2=input(‘Dame una constante entre 0 y 4:’);
y0=input(‘Dame un valor inicial entre 0 y 1:’);
y2(1)=y0;
for i=1:100
y2(i+1)=k2*y2(i)^2-1;
end
disp(‘—Tercer Experimento:—‘)
k3=input(‘Dame una constante entre 0 y 4:’);
z0=input(‘Dame un valor inicial entre 0 y 1:’);
z2(1)=z0;
for i=1:100
z2(i+1)=k3*z2(i)^2-1;
end
figure
subplot(4,1,1)
plot(x2);title(‘Primer experimento’);
subplot(4,1,2)
plot(y2);title(‘Segundo experimento’);
subplot(4,1,3)
plot(z2);title(‘Tercer experimento’);
subplot(4,1,4)
plot(z2,’r’);
hold on
plot(x2);
hold on
plot(y2,’k’);title(‘Todos juntos’);
hold off
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Vamos a dibujar ahora un diagrama de bifurcacion para el primer sistema’)
K=0:0.01:4;
X=zeros(length(K),5000);;
X(:,1)=0.3;
for j=1:length(K);
for i=1:5000
X(j,i+1)=K(j)*X(j,i)*(1-X(j,i));
end
end
Y1=X(:,4000:end);
figure
plot(Y1);title(‘Diagrama de bifurcacion para el primer sistema’)
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Vamos a dibujar ahora un diagrama de bifurcacion para el segundo sistema’)
K=0:0.01:4;
X=zeros(length(K),5000);
X(:,1)=0.3;
for j=1:length(K);
for i=1:5000
X(j,i+1)=K(j)*X(j,i)^2-1;
end
end
Y2=X(:,4000:end);
figure
plot(Y2);title(‘Diagrama de bifurcacion para el segundo sistema’)

Primer experimento (k=4)

La diferencia entre los datos iniciales es de 0.01 entre el de arriba y el segundo y de 0.001 entre el primero y el tercero. Como se puede ver en la gráfica de abajo, las trayectorias se separan más o menos por llegado un tiempo, pero al principio iban bien juntitas. Además podemos ver que todas estan en el mismo atractor. Eso se ve por los ‘patrones’ característicos que tienden a producirse. Me refiero a las oscilaciones grandes seguidas de varias muy pequeñas.  Esto se entiende fácil si se imagina uno nuestro estado del sistema como una mosca cansina. Estará dando vueltas a tu alrededor, quizá de forma complicada, pero antes o despues va a volver a pasar por tu oreja, quizá no como la vez anterior, pero muy cerca. Eso es lo que produce estos patrones. Que nuestro estado pasa cerca de una cierta parte del atractor.

Segundo experimento (k=1.6)

Arriba se muestran los resultados de ejecutar el código poniendo k=4 para el primer sistema y k=1.6 para el segundo. Veamos cómo cambia el carácter de la solución al mover k:

Otra cosa que resultaba ‘rara’ del comportamiento caótico era que reglas aparentemente muy sencillas (como puede ser elevar al cuadrado y restar 1) daban comportamientos muy complicados. También ocurre al revés, reglas aparentemente complicadas dan comportamiento simple.

Quizá otro día hable del sistema de Lorenz y de su atractor famoso.