De contar, las integrales y los carnavales (de matemáticas)

(Esta es una entrada par participar en el X Carnaval de Matemáticas (http://carnavaldematematicas.drupalgardens.com/) organizado por La Ciencia de la Mula Francis (o Francis (th)E mule Science’s News, http://francisthemulenews.wordpress.com/))

En esta entrada para nuestro blog (http://ambages.es/blog/) vamos a hablar de las posibles maneras de contar que se nos ocurren y sus aplicaciones a la integración.

Desde los primeros cursos en el Instituto nos hacen que aprendamos unas cuantas fórmulas para el cálculo de volúmenes y áreas de cuerpos o figuras más o menos “corrientes”, pirámides, conos, cuadrados, círculos… Más tarde, ya en Bachiller nos enseñan la genial herramienta que es la Integral de Riemann.

Este concepto es clave, por lo que vamos a gastar unas líneas recordándolo. Supongamos, por facilitar la exposición, que estamos calculando el área bajo una curva y=f(x). Además, f es una curva curvada, nada de una linea recta o una poligonal. Lo que pensamos es, bueno, como sabemos la fórmula del área del rectángulo, vamos a ‘tapar’ el área bajo la curva con rectangulitos de distintos tamaños. Hecho esto observamos que el área calculada y el área que queríamos calcular no coinciden… pero si lo hemos hecho bien estarán muy cerca, si bien la que queremos calcular será un poquito mayor. La idea es ahora tapar ‘un poquito más’ del área buscada, para tener la certeza de que el área bajo la curva está entre dos valores aproximados y que son explícitos. Una vez hecho esto podemos tomar cada vez un mayor número de rectangulos para que nuestra estimación del área sea más precisa. Además argumentamos que en el límite cuando el número de rectángulos se hace infinito las 3 áreas, la buscada, la encontrada ‘por debajo’ y la encontrada ‘por arriba’, coincidirán.

Observamos que esto es válido para las curvas y=f(x) ‘razonables’. Como esta entrada es divulgativa no vamos a entrar en más detalles, pero es un ejercicio divertido (y fácil) tratar de encontrar una función que no se pueda integrar en el sentido de Riemann.

¿Qué os parece?, el cálculo de áreas, un problema central en la historia de la humanidad ya que está ligado a los campos de cultivo y por lo tanto al yantar, resuelto sin fórmulas complicadas ni nada parecido. Es cosa simplemente de ‘ir tapando con rectángulos’.

De esto ya se dio cuenta el genial Arquímedes (el que gritó ¡Eureka! y salió corriendo de la bañera). Así en su ‘Sobre la cuadratura de la parábola’ para calcular el área encerrada por un segmento de parábola lo que hace es tapar dicha superficie con triángulos isósceles de manera que lo que queda fuera de estos triángulos vuelven a ser segmentos de parábola similares al primero y de esta manera recurrente, sumando las áreas d elos infinitos triángulos calcular la superficie encerrada por la parábola inicial. Me gustaría señalar que la serie dada por las áreas de los triángulos es una serie geométrica de razón 1/4 y que Arquímedes la sumó entera. Es la primera vez en la historia (al menos que yo sepa) que se suma COMPLETA una serie geométrica (que es quizá la más fácil de las series), pues si bien en los Elementos de Euclides se da una fórmula para calcular la n-ésima suma parcial para cualquier n esto no es lo mismo que sumar la serie completa, hay una sutil diferencia.

Hasta ahora hemos hablado de integrales, áreas… pero nada de contar como dijimos al principio. Ahora vamos a eso. Supongamos que somos pobres becarios de investigación (lo de pobre es en sentido literal), y que queremos contar nuestro escaso peculio. Tenemos así monedas de 2 euros, de un euro, de 10 céntimos… vamos, de todas las monedas que hay. Una manera de contarlas es ponerse pacientemente, ir una a una e ir sumando. Primero cogemos una de 1 euro, luego una de 2 euros, luego una de 5 céntimos… Eso es lo que hace la integral de Riemann.


Pero esta manera de hacerlo no es la única. También podemos agrupar las monedas según su valor y contar cuantas tenemos en cada grupo. Así juntamos y nos salen 3 monedas de 2 euros por un lado, 10 monedas de 5 céntimos por otro… Ahora sólo hemos de multiplicar el número de monedas por su valor y sumar los resultados para cada grupo. Esta idea, para el cálculo integral, se llama Integral de Lebesgue. Lo que se hace es tapar con rectángulos según la altura de la función. Así en la figura adjunta (sacada de la wikipedia) se ve en azul la manera de integrar de Riemann y en rojo la manera de integrar de Lebesgue. Parece una tontería sin consecuencias, pero tiene unas consecuencias teóricas y prácticas importantisimas, de manera que es la Integral que los matemáticos usamos normalmente. Sin embargo, como es una entrada divulgativa, y no una clase de teoría de la medida lo voy a dejar aquí.

Introducción al cálculo variacional en la física

Siempre me ha resultado curioso la facultad sorpresiva de la Naturaleza. Nos empeñamos en admirar lo compleja que es en cada detalle. Y después descubrimos que, si miramos desde el punto de vista adecuado, todo es simple. Los científicos nos inventamos leyes (de acuerdo con unas observaciones) para intentar comprender cómo funciona, y al final basta con unos pocos principios fundamentales para derivar el resto.

Al principio estas leyes suelen ser engorrosas, pues de manera experimental intentamos contrastar nuestras observaciones con funciones que se asemejen a nuestros resultados con el fin de poder predecir más fenomenología. Así le ocurrió a Kepler que, habiendo heredado los datos de Tycho Brahe y teniendo observaciones de altísima calidad, enunció las tres leyes que llevan su nombre. Estas leyes requirieron de mucho trabajo experimental y análisis de datos para ser obtenidas y son todo un triunfo de la ciencia. Sin embargo, como en todos los campos científicos, son solo una aproximación de la realidad e introducir perturbaciones (dadas por otros planetas) eran necesarias para poder reproducir con más detalle los resultados.

Más tarde, arduos razonamientos acerca de las observaciones suelen llevar a refinamientos de la teoría. De este modo, Newton propuso la “ley de la gravitación universal” que, aplicada a un sistema simple bajo ciertas suposiciones, ¡daba como resultado las leyes de Kepler!

En el ejemplo anterior, afortunado donde los haya, no he querido entrar en las teorías anteriores de epiciclos y deferentes. Estas “teorías” se ajustaban muy bien a los datos experimentales y por eso tardaron tanto en ser desbancadas. Sin embargo, recientemente se ha demostrado que dado un número suficiente de epiciclos y deferentes, se puede reproducir cualquier órbita, pero esto no nos interesa… lo que queremos es saber cómo son las cosas y, en general, predecir el comportamiento de los sistemas de acuerdo con nuestro conocimiento: si nuestro método puede dar como pronóstico cualquier cosa , la realidad deja de tener sentido y pasa a ser un caso particular, en vez de ser el sujeto central de lo que nos atañe.

Por eso es tan importante la simplicidad. El objetivo de todo científico es poder hacer prediciones sobre el comportamiento de la realidad; si está descrito de manera muy compleja es posible que no estemos teniendo en cuenta los parámetros y simplificaciones adecuados para nuestro sistema en cuestión.

Supongo que algo así deberían tener en la mente los científicos y matemáticos de los siglos XVIII y XIX cuando fundaron lo que se denominó “mecánica analítica”.  Para ello, utilizaron el metafísico “principio de mínima acción” que plantea, en palabras de Maupertuis [1] que

“…la Naturaleza siempre actúa  de la manera más simple posible para producir sus efectos.”

Y… ¿para qué sirve este principio?  Voy a ilustrarlo con un ejemplo de mecánica clásica.  Queremos saber qué camino tomará un cuerpo en una cierta situación. Imaginemos que tenemos una cantidad (un funcional, matemáticamente hablando), a la que llamaremos acción, que depende del “camino” que ese cuerpo toma en su movimiento. Esa acción puede ser calculada para cada cualquier camino siempre y cuando tenga una cierta regularidad.  Pues bien, el camino real, el que tomará el cuerpo y que podrá ser predicho, es aquel que hace de la acción un mínimo (más rigurosamente, un valor estacionario).  Esto es “fácil” de entender:

Si calculamos la acción para todos los caminos, escogemos el camino que tiene la acción más pequeña, esa trayectoria es nuestra solución.

Simple, ¿no?

Muestra del principio de mínima acción en algunos posibles caminos

Si a cada posible trayectoria de un cuerpo entre los puntos inicial y final de su trayectoria se le asigna una acción S, la trayectoria real será aquella que tenga la acción menor. Aquí, la segunda trayectoria 2 será la real, por tener la acción menor al resto.

Pensémoslo por un segundo… ¿no es cierto que el número de caminos posibles es infinito? ¡¿Tenemos que calcular la acción para todos los posibles caminos?!

La respuesta es “no”.  Hete aquí la belleza de la Naturaleza y del ingenio humano. Matemáticamente es un poco engorroso de explicar, y se necesita alguna fórmula, de modo que  dejaré tan engorrosa tarea a Rafa, más versado que yo en estos temas.

Uno de los trabajos de la física es averigüar cuál es la definición correcta de acción que nos da resultados que se correspondan con el comportamiento de la Naturaleza.

Por mi parte, y como estaba planeado, escribiré sobre las dos principales ramas de esta teoría en la física, el método Lagrangiano y Hamiltoniano, utilizando como guía el oscilador armónico. De este modo, comprenderemos un poco mejor las ventajas y desventajas de este método en comparación con la mecánica vectorial de Newton (de la que ya hablamos aquí)

Por último, una reflexión:

Simplicidad no implica que vaya a ser fácil obtener un resultado correcto. Simplicidad implica que puedes contárselo a tu abuela (de una manera más o menos burda).

En estas lineas, Euler dejó escrito [2]:

“Comparados con los métodos de la mecánica tradicional, puede ser que el movimiento sea más dificil de calcular utilizando nuestro nuevo método; sin embargo, parece más fácil de comprender desde primeros principios.”


Referencias:

[1] Maupertuis, Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles (1744) (Traducción inglesa, original en francés) Nótese que aplica su sistema a la óptica, como lo hizo antes Fermat.

[2] Euler, Metodus inveniendi. Additamentum II (1744) (traducción inglesa)

[3] Cornelius Lanczos. The variational principles of mechanics (1949)

(Esta entrada es una contribución al XV Carnaval de la Física alojado por Curiosidades de la Microbiología)

El oscilador armónico – Parte I

Hola a todos.
Esta entrada es mi primera contribución al blog, y siendo físico me gustaría comenzar con el que es el ladrillo de la física: el oscilador armónico.
El nombre, que nos da una idea de a qué nos estamos enfrentando, indica el movimiento de algo que se repite en el espacio y en el tiempo. Matemáticamente, siendo más estrictos, un movimiento armónico sería el descrito por una función “seno” o “coseno” . La palabra “armónico”, procedente del griego, nos da la idea de una conveniente proporcion y correspondencia entre unas y otras cosas. El concepto aparece en música, como la unión de sonidos acordes, y Kepler (amante de la música y con su mente puesta en ella) lo utilizaba como expresión de belleza y unión entre las matemáticas y el movimiento celeste. [Vease “La armonía de los mundos“] Continue reading

¿Podemos ir hacia atrás (matemáticamente) en el tiempo?

Me comentó David que sería interesante que explicase un poquito de lo que significa la reversibilidad temporal desde el punto de vista de las ecuaciones en derivadas parciales (EDPs de ahora en adelante). Es decir, sin mencionar nada de entropías. Este es un tema muy interesante e importante aunque a primera vista parezca una tontería. Lo hemos puesto como una serie de dos entradas. La primera (esta que estás leyendo) presentará las EDPs más fáciles y estudiará sus propiedades de cara a la reversibilidad temporal. En la segunda veremos la derivación de unos modelos más complicados y trataremos de entender dónde aparece la irreversibilidad temporal. Lo cierto es que en cierto modo es llamativo, pues las leyes de Newton son reversibles en tiempo y muchas (casi todas) de las ecuaciones de las que hablaremos surgen de ellas.

Viendo qué ocurre:
Para entender qué quiere decir y qué implica la reversibilidad (o irreversibilidad) temporal hemos de comprender primero los ejemplos más básicos de EDPs. Como dato para los técnicos supondré que todos los problemas están puestos para (t,x)\in [0,T]\times\mathbb{R}. Inmerso en el texto hay imágenes .jpg, imágenes animadas .gif (pinchad en ellas para que empiecen a moverse) y código Matlab (¡usadlo si podéis!).

La ecuación del transporte:

Comenzaremos con la ecuación del transporte unidimensional con coeficientes constantes. Esta es la EDP más sencilla que podemos poner.

\partial_t u + c \partial_x u=0, u(0,x)=f(x).

Supondremos que f es una función derivable con derivada continua una vez. La solución de esta ecuación es u(t,x)=f(x-ct) (¡comprobadlo!). Esta ecuación se llama ‘del transporte’ porque lo que hace es eso ‘mueve’ nuestra distribución inicial f. Si queremos cambiar el sentido del tiempo hemos de hacer el cambio t por -t. Entonces la nueva ecuación es

-\partial_t u + c \partial_x u=0, u(0,x)=f(x).

Observamos que el cambiar el tiempo de sentido es equivalente a cambiar el signo de c. Si utilizamos el código que propongo con varios valores de c observamos que este parámetro es una velocidad. Por lo tanto, parece natural que cambiar el sentido del tiempo cambie el sentido del movimiento. Es decir, que si para c>0 íbamos a la derecha, para tiempos negativos (o equivalentemente -c) tenemos que ir a la izquierda. Concluímos así que la ecuación del transporte es reversible en tiempo y que la reversibilidad es muy natural si partimos del proceso físico que se modela con esta ecuación.


Otra consecuencia, ésta mucho más sutil, de la reversibilidad temporal es que nuestra solución NUNCA va a ser mejor que nuestro dato inicial f. Esto es obvio en este caso porque tenemos una solución explícita, pero es cierto en general. Si u tuviese más derivadas que f entonces dando la vuelta al tiempo tendríamos una contradicción.

function [u,x,t]=transporte(dx,dt,f,c)
%%
%Funcion que me aproxima la solucion exacta (conocida) de la
%ecuacion del transporte u_t+cu_x=0 con dato inicial
% u(0,x)=f(x), paso espacial dx y paso temporal dt.
%f sera una funcion
% Rafael Granero Belinchon
%%

%Definicion de parametros:
T=10; %El tiempo final
t=0:dt:T; %el vector de tiempos
x=-pi:dx:pi; %el vector de espacio donde queremos
%nuestra aproximacion. No necesitamos condiciones de borde ¿por que?
u=zeros(length(x),length(t));
F=feval(f,x);

%Calculo de la solucion:
%La solucion del problema anterior es u(x,t)=f(x-ct)
u(:,1)=F;
for j=2:length(t)
u(:,j)=feval(f,x-c*t(j));
plot(x,u(:,j-1));%Representacion de los resultados
drawnow
end

function f=prueba(x)
f=sin(x);


La ecuación de ondas:

La siguiente ecuación es el paradigma de ecuación hiperbólica. Me refiero a la ecuación de ondas. Viendo el nombre está claro qué proceso físico quiere describir ¿no?.

Esta ecuación se escribe

\partial_t ^2 u= c^2\partial_x^2 u, u(0,x)=f(x), \partial _t(0,x)=g(x).

Visualmente parece mucho más complicada que la ecuación del transporte… sin embargo en realidad es igual (al menos en un cierto sentido). Vamos a escribirla como un sistema. Para ello definimos el sistema

\partial_t u=c\partial_x v, \partial_t v=c\partial_x u.

Si ahora derivamos en tiempo la ecuación para \partial_t u y utilizamos la segunda ecuación obtenemos

\partial_t^2 u=c\partial_x \partial_tv=c^2\partial_x ^2 u.

Es decir, que la ecuación de ondas no es más que dos transportes acoplados. Sin embargo todavía podemos hacerlo mejor. Podemos darnos cuenta de que el operador diferencial se puede escribir como

\partial_t^2-c^2\partial_x^2=(\partial_t + c\partial_x)(\partial_t-c\partial x),

y por lo tanto si tenemos u=u_1+u_2 con

\partial_t u_1 + c\partial_x u_1=0; \partial_t u_2 - c\partial_x u_2=0

tenemos una solución de la ecuación original. Concluímos que, como la ecuación del transporte era reversible, la ecuación de ondas, que se puede escribir como un par de ecuaciones del transporte debe ser reversible también.

La ecuación del calor:

Esta ecuación es parabólica. Se escribe

\partial_t u= \partial_x^2 u, u(0,x)=f(x).

Visualmente parece estar a medio camino entre la ecuación del transporte y la ecuación de ondas, sin embargo su comportamiento en radicalmente distinto. Para convencernos de ello podemos ‘jugar’ un poco con el código Matlab que adjunto. Los datos iniciales por defecto son los mismos, pero os animo a cambiarlos.

function [u,x,t,mx]=heatff(N,dt,K)
%%
%Funcion que me aproxima la solucion de la
%ecuacion del calor con dato inicial seno
%con condiciones periodicas (para usar FFT)
%N es el numero de nodos espaciales que se quieren
%usar. dt es el paso temporal que se quiere.
%K es la constante de difusion.
%Devuelve el espacio, el tiempo, la aproximacion de
%la solucion y el maximo de dicha solucion en cada tiempo
%Rafael Granero Belinchon
%%
T=5;%Tiempo final
dx=2*pi/(N-1);
x=-pi:dx:pi;%Espacio
t=0:dt:T;%Tiempo
uo=sin(x);%dato inicial
for k=1:N/2 %Operador laplaciano en espacio de fourier
L(k)=(k-1)*(k-1);
L(k+N/2)=(N/2-k+1)*(N/2-k+1);
end
L=K*L;
u(:,1)=uo’;
mx(1)=max(uo);
for l=1:length(t)
u(:,l+1)=ifft(exp(-L*dt*l).*fft(uo))’;%solucion
mx(l+1)=max(u(:,l+1));%Evolucion del maximo
plot(x,u(:,l));axis([-pi,pi,-1,1]);%Representacion de los resultados
drawnow
end
end

Para estudiar esta ecuación vamos a utilizar la transformada de Fourier. Para la transformada de Fourier de u(x) usaremos la notación \hat{u}(k). Así si transformamos la ecuación en espacio obtenemos las ecuaciones diferenciales ordinarias (EDOs a partir de ahora) indexadas en la longitud de onda k siguientes

\frac{d}{dt}\hat{u}(t,k)=-k^2\hat{u}(t,k), \hat{u}(0,k)=\hat{f}(k).

Esta ecuación la podemos resolver explícitamente

\hat{u}(t,k)=e^{-k^2t}\hat{f}(k).

Observemos ahora qué quiere decir el cambio del sentido del tiempo. De nuevo hagamos el cambio t por -t. La ecuación nos queda

\partial_t u= -\partial_x^2 u, u(0,x)=f(x).

No se ve nada claro, sin embargo, si buscamos los efectos del cambio en la solución explícita tenemos

\hat{u}(t,k)=e^{k^2t}\hat{f}(k),

de manera que cuando invirtamos la transformada de Fourier estamos calculando una convolución con una función que no está acotada, ni tiene ninguna potencia integrable… Vamos, que nuestra solución (que existe explícitamente) no está en ningún espacio razonable ni con propiedades físicas razonables. Por ejemplo, si u es la temperatura, entonces su integral (que es el calor) debe ser finita. Pues si damos la vuelta al tiempo obtenemos calor infinito para cualquier tiempo. Concluímos que la ecuación del calor NO es reversible en tiempo.

Una propiedad que a veces se da en las ecuaciones irreversibles y que es bien interesante es el ‘efecto regularizante’. Es decir, tu dato inicial f es continuo (por ejemplo), pero tu solución u es infinitamente derivable para todo tiempo (positivo). Como ya hemos mencionado antes, este comportamiento difiere del de las ecuaciones hiperbólicas usuales. La prueba de esto se puede hacer sin más que multiplicar por u e integrar por partes en espacio (¡comprobadlo!). Después basta observar que la ecuación es invariante por derivación tanto en tiempo como en espacio (¡Concluid el argumento!).

Vistos estos 3 ejemplos parece que hay una relación entre la ‘simetría’ del problema y su reversibilidad temporal. Quiero decir que, al menos de momento, las ecuaciones que tienen el mismo número de derivadas temporales que espaciales han resultado ser reversibles, mientras que las que no las tienen son irreversibles.

Otra cosa que se nos puede ocurrir es que las ecuaciones reversibles sean las que ‘no tiendan a nada’. Así vemos que la ecuación del calor tiende a ser idénticamente cero (necesita tiempo infinto para llegar a serlo) mientras que la ecuación del transporte sólo se movía por el espacio.

Veamos otro ejemplo:

La ecuación de Schrödinger:

Esta ecuación, clave en mecánica cuántica, se escribe

\partial _t u= i\partial_x^2 u, u(0,x)=f(x).

Si repetimos el análisis que hicimos para la ecuación del calor obtenemos que la solución es

\hat{u}(t,k)=e^{-ik^2t}\hat{f}(k),

que tiene un comportamiento oscilatorio. Por lo tanto, pese a tener una derivada en tiempo y dos en espacio se parece más a una ecuación de ondas que a una ecuación del calor. Observamos que el hecho de que aparezca la unidad imaginaria hace que u no sea real, sino compleja. Por lo tanto tiene una función conjugada. Si ahora cambiamos el sentido del tiempo observamos que para la función conjugada \bar{u} la ecuación es la misma. Por lo tanto si u es nuestra solución con el tiempo hacia delante, \bar{u} es una solución con el tiempo hacia atrás. Por lo tanto la ecuación de Schrödinger es reversible. Este ejemplo desmonta la hipótesis de que als reversibles debían tener el mismo número de derivadas en espacio y en tiempo.

function [u,x,t,L2,mx]=schrodinger(N,dt)
%%
%Funcion que me aproxima la solucion de la
%ecuacion de schrodinger con dato inicial seno
%con condiciones periodicas (para usar FFT)
%N es el numero de nodos espaciales que se quieren
%usar. dt es el paso temporal que se quiere.
%Devuelve el espacio, el tiempo, la aproximacion de
%la solucion, la norma L^2 de dicha solucion en cada tiempo
%y el maximo de la solucion en todo tiempo.
%Rafael Granero Belinchon
%%
T=5;%Tiempo final
dx=2*pi/(N-1);
x=-pi:dx:pi;%Espacio
t=0:dt:T;%Tiempo
uo=sin(x);%dato inicial
for k=1:N/2 %Operador laplaciano en espacio de fourier
L(k)=(k-1)*(k-1);
L(k+N/2)=(N/2-k+1)*(N/2-k+1);
end
L=i*L;
u(:,1)=uo’;
L2(1)=norm(uo)*dx;
mx(1)=max(abs (uo));
for l=1:length(t)
u(:,l+1)=ifft(exp(-L*dt*l).*fft(uo))’;%solucion
L2(l+1)=norm(u(:,l+1))*dx;%Evolucion de la norma L^2
mx(l+1)=max(abs(u(:,l+1)));%Evolución del máximo
plot(x,real(u(:,l)));axis([-pi,pi,-1,1]);%Representacion de los resultados
drawnow
end
end

Como dato anécdotico de esta ecuación hacemos notar que no puede reflejar efectos relativistas (¿por qué?).

En la próxima entrada, enlazando con esta, trataré la derivación desde la mecánica hamiltoniana de los modelos que se utilizan en mecánica de fluidos y trataré de explicar dónde aparece la irreversibilidad en el proceso. Sin embargo, esto es algo que no está ‘completamente entendido’ todavía.

La teoría del caos y el efecto mariposa

Para empezar sólo la voy a llamar teoría del caos en el título. Era para captar al atención, y este nombre lo consigue.  Es mejor decirle ‘de los sistemas dinámicos’ o algo así. Por desgracia, la fama de todo esto ha hecho que se encuentre de todo en internet. Por ejemplo hoy he visto una página donde se afirmaba que el efecto mariposa era los efectos de… ¡viajar en el tiempo! Impresionante. Y es que aficionarse a la ciencia está bien, pero sin perder el norte.

Por el nombre (caos) hay gente que piensa que un comportamiento caótico es aleatorio e impredecible. Vamos, un cisco bueno. Lo cierto es que lo primero es falso y lo segundo, como casi siempre, es ‘depende’.

El caos es ‘determinista‘, que quiere decir que dado un estado inicial, el comportamiento a largo plazo está determinado sin error posible y es único. Esto es, que está ‘determinado’ por el estado inicial. Consideremos un sistema discreto, es decir, una ley de recurrencia, por ejemplo la también famosa ley de Fibonacci, pero sin estados iniciales. Entonces la dinámica (la ley que sigue el sistema) es f_n=f_{n-1}+f_{n-2} Dados dos estados iniciales, por ejemplo 1,1 conocemos todos los valores de f. Además, si realizamos el experimento dos veces con los mismos valores iniciales los resultados serán idénticos. Eso quiere decir determinista.

Diferentes son los sistemas probabilistas. En estos sistemas hay un componente azaroso que impide conocer el largo plazo. Pero lo que de verdad los caracteriza es que para el mismo dato inicial podemos obtener resultados de los experimentos completamente distintos. Por ejemplo (muy poco válido como veremos ahora), una moneda. Consideramos el experimento tirar una vez la moneda. A mismas condiciones unas veces saldrá cara y otras cruz. Digo que es un mal ejemplo, porque este modelo es probabilista sólo por nuestro desconocimiento, pues si conociésemos la dirección y la fuerza exactas del lanzamiento sabríamos si saldrá cara o cruz. La gravedad es determinista. Esto nos podría llevar a pensar hasta que punto existe el azar, o si puede ser la probabilidad sólo una herramienta útil dada nuestra ignoracia de la realidad completa. Pensar en un mundo completamente determinista ya lo hizo Laplace. Y tiene una frase famosa por ello.

Ya hemos entendido la palabra determinista (si no es así tenéis que releerlo). Veamos el ‘depende’.

Es aquí donde entra el ‘efecto mariposa‘, que es el nombre que le puso Edward Lorenz a la sensibilidad a los datos iniciales. ¿A que es exótico?. Creo que su idea era atraer la atención hacia su conferencia. El efecto mariposa viene a decir que cualquier cambio minúsculo acaba teniendo repercusiones enormes, y por lo tanto nuestra aproximación (predicción) será una chapuza completa. O exóticamente

Si una mariposa batiese sus alas en Pekín provocaría un tornado en Texas un mes siguiente.

O algo parecido. Bueno, no matéis a todas las mariposas para evitar los tornados. No hay que cogerlo tan literal. En realidad hay que hacer una interpretación de casi todo. Las mariposas no provocan tornados. Los tornados surgen de un conjunto de factores que los hacen posibles, esto es, todas las mariposas del mundo, nuestros aviones, nosotros corriendo, la humedad en mi pueblo… Ahora, si pudiesemos tener dos planetas Tierra, con exactamente las mismas condiciones salvo una mariposa, entonces los climas serían distintos. ¿En qué sentido (ahora viene el depende)?. Bueno, no distintos en el sentido de que en Valencia helase por las noches. Llamemos a este tipo de cambios bruscos cambios de tipo 1. No, serían cambios en el orden y en el tiempo (tiempo-temporal, no tiempo-clima). Por ejemplo, un tornado que apareciese en un planeta el día 1 de Julio en el otro no aparecería y aparecería uno el 18 de Agosto. O una tormenta en mi pueblo no caería, caería en Albaladejo. Estos son los cambios de tipo 2.

Los cambios de tipo 1 son cambios bruscos que no quiere nadie. Estos cambios van asociados a cambios muy profundos en el sistema. Ahora tengo que ponerme técnico, lo siento. En un sistema dinámico, hay asociado un espacio de fases, que es un sitio donde viven las características del sistema. En este lugar de posiciones y velocidades (si es físico el sistema) o en el caso del clima de humedades y temperaturas, existen ‘cosas’ que atraen. Además son cosas raras normalmente en los casos caóticos. De hecho son fractales. Como no tenían muchas ganas de buscar un nombre exótico los llamaron ‘atractores extraños’. Posee la virtud de la simpleza. Los comportamientos del sistema cambian bruscamente entre unos atractores y otros (el mismo sistema puede tener varios al variar los parámetros). Es decir, para seguir con el ejemplo del clima, tenemos nuestro porcentaje de CO2 en la atmósfera en un nivel x. Nuestro sistema entonces tiene x como un parámetro. Si aumenta el porcentaje, digamos a 2x entonces nuestro sistema cambia de parámetro, pudiéndose producir un cambio de atractor, con el consiguiente nevazo en la Malvarrosa. Podemos ver esto del plano de fases y los atractores como un par de platos hondos y una aceituna, tenemos los platos juntos de manera que la aceituna reposa en el borde de ellos. La aceituna caerá rodando a uno de ellos. Los platos son los atractores, el conjunto de los dos es el espacio de fases y nuestra aceituna es el estado del sistema.

Dicho esto, está claro que hay que evitar los cambios de tipo 1. Los de tipo 2 son mejores en general.

Resumiendo, si tenemos un estado inicial, este nos viene dado por un conjunto de mediciones que hemos hecho. Estas mediciones no tienen (ni pueden) tener una precisión infinita (en cuyo caso el estado del sistema estaría determinado siempre) por lo que aparecen pequeños errores entre nuestro estado inicial para realizar los cálculos y la predicción y el verdadero estado inicial. Es decir, en nuestro espacio de fases hay dos puntos distintos, el de las medidas y el real. Al ser el comportamiento caótico, al avanzar el tiempo las curvas que tracen estos puntos se separarán. Y consecuentemente nuestra predicción a largo tiempo fallará.

Concluyendo, el ‘depende’ significa que podemos predecir el corto (quizá muy corto) plazo con poco error y podemos predecir si habrá cambio de atractor o no. Esto es comparable a decir que en Cuenca en Julio hará calor pero no poder decir habrá 36º C a las 15 de la tarde del día 2 de Julio. Decir que hará calor es decir el atractor, decir la temperatura exacta a la hora cabal es una predicción a largo plazo.

El comportamiento caótico existe, además es muy común. Aparece en todas las ramas del saber, física, biología medicina… Necesita algunas cosas para que se pueda dar. El sistema de ecuaciones diferenciales ha de ser no lineal y tener una dimensión mayor que dos. Pero esto no es nada raro en la cruda realidad fuera de las ‘oscilaciones pequeñas’ y cosas por el estilo.

He hecho un programita en Matlab para ver la sensibilidad a los datos iniciales:

function [x1,y1,z1,Y1,x2,y2,z2,Y2]=caoslogistica
%Este codigo estudia varios casos de 2 sistemas dinamicos discretos
%que conducen a un comportamiento caotico para ciertos valores
%de un parametro. Asi mismo dibuja unos diagramas de bifurcacion.
%Para el primer caso se puede poner k=4 para ver el comportamiento
%caotico. Para el segundo se puede poner k=1.6.
%Rafael Granero Belinchon.

disp(‘Comenzamos con el sistema dinamico Xn+1=k1Xn(1-Xn)’)
disp(‘—Primer Experimento:—‘)
k1=input(‘Dame una constante entre 0 y 4:’);
x0=input(‘Dame un valor inicial entre 0 y 1:’);
x1(1)=x0;
for i=1:100
x1(i+1)=k1*x1(i)*(1-x1(i));
end
disp(‘—Segundo Experimento:—‘)
k2=input(‘Dame una constante entre 0 y 4:’);
y0=input(‘Dame un valor inicial entre 0 y 1:’);
y1(1)=y0;
for i=1:100
y1(i+1)=k2*y1(i)*(1-y1(i));
end
disp(‘—Tercer Experimento:—‘)
k3=input(‘Dame una constante entre 0 y 4:’);
z0=input(‘Dame un valor inicial entre 0 y 1:’);
z1(1)=z0;
for i=1:100
z1(i+1)=k3*z1(i)*(1-z1(i));
end
subplot(4,1,1)
plot(x1);title(‘Primer experimento’);
subplot(4,1,2)
plot(y1);title(‘Segundo experimento’);
subplot(4,1,3)
plot(z1);title(‘Tercer experimento’);
subplot(4,1,4)
plot(z1,’r’);
hold on
plot(x1);
hold on
plot(y1,’k’);title(‘Todos juntos’);
hold off
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Comenzamos con el sistema dinamico Xn+1=k1Xn^2-1’)
disp(‘—Primer Experimento:—‘)
k1=input(‘Dame una constante entre 0 y 4:’);
x0=input(‘Dame un valor inicial entre 0 y 1:’);
x2(1)=x0;
for i=1:100
x2(i+1)=k1*x2(i)^2-1;
end
disp(‘—Segundo Experimento:—‘)
k2=input(‘Dame una constante entre 0 y 4:’);
y0=input(‘Dame un valor inicial entre 0 y 1:’);
y2(1)=y0;
for i=1:100
y2(i+1)=k2*y2(i)^2-1;
end
disp(‘—Tercer Experimento:—‘)
k3=input(‘Dame una constante entre 0 y 4:’);
z0=input(‘Dame un valor inicial entre 0 y 1:’);
z2(1)=z0;
for i=1:100
z2(i+1)=k3*z2(i)^2-1;
end
figure
subplot(4,1,1)
plot(x2);title(‘Primer experimento’);
subplot(4,1,2)
plot(y2);title(‘Segundo experimento’);
subplot(4,1,3)
plot(z2);title(‘Tercer experimento’);
subplot(4,1,4)
plot(z2,’r’);
hold on
plot(x2);
hold on
plot(y2,’k’);title(‘Todos juntos’);
hold off
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Vamos a dibujar ahora un diagrama de bifurcacion para el primer sistema’)
K=0:0.01:4;
X=zeros(length(K),5000);;
X(:,1)=0.3;
for j=1:length(K);
for i=1:5000
X(j,i+1)=K(j)*X(j,i)*(1-X(j,i));
end
end
Y1=X(:,4000:end);
figure
plot(Y1);title(‘Diagrama de bifurcacion para el primer sistema’)
a=input(‘Presiona cualquier tecla para continuar:’);
clear a;
disp(‘Vamos a dibujar ahora un diagrama de bifurcacion para el segundo sistema’)
K=0:0.01:4;
X=zeros(length(K),5000);
X(:,1)=0.3;
for j=1:length(K);
for i=1:5000
X(j,i+1)=K(j)*X(j,i)^2-1;
end
end
Y2=X(:,4000:end);
figure
plot(Y2);title(‘Diagrama de bifurcacion para el segundo sistema’)

Primer experimento (k=4)

La diferencia entre los datos iniciales es de 0.01 entre el de arriba y el segundo y de 0.001 entre el primero y el tercero. Como se puede ver en la gráfica de abajo, las trayectorias se separan más o menos por llegado un tiempo, pero al principio iban bien juntitas. Además podemos ver que todas estan en el mismo atractor. Eso se ve por los ‘patrones’ característicos que tienden a producirse. Me refiero a las oscilaciones grandes seguidas de varias muy pequeñas.  Esto se entiende fácil si se imagina uno nuestro estado del sistema como una mosca cansina. Estará dando vueltas a tu alrededor, quizá de forma complicada, pero antes o despues va a volver a pasar por tu oreja, quizá no como la vez anterior, pero muy cerca. Eso es lo que produce estos patrones. Que nuestro estado pasa cerca de una cierta parte del atractor.

Segundo experimento (k=1.6)

Arriba se muestran los resultados de ejecutar el código poniendo k=4 para el primer sistema y k=1.6 para el segundo. Veamos cómo cambia el carácter de la solución al mover k:

Otra cosa que resultaba ‘rara’ del comportamiento caótico era que reglas aparentemente muy sencillas (como puede ser elevar al cuadrado y restar 1) daban comportamientos muy complicados. También ocurre al revés, reglas aparentemente complicadas dan comportamiento simple.

Quizá otro día hable del sistema de Lorenz y de su atractor famoso.