Problemas de frontera “no-tan-libre” en dinámica de fluidos: las diferencias

En esta entrada tratamos de presentar de manera sencilla la siguiente pregunta

¿Cómo de importante es el lecho marino para las olas en la superficie?

Así tenemos que estudiar el problema de la evolución de la interfase entre dos fluidos cuando dichos fluidos se encuentran en un medio poroso acotado y, tras hacer unas simulaciones para ver por dónde iban los tiros, dimos los primeros pasos en el estudio matemático del problema. Sin embargo, pese a que en las simulaciones observamos grandes diferencias en los primeros resultados matemáticamente rigurosos no capturamos esos fenómenos.

La primera pregunta que nos hacemos es ¿cuál es la evolución de la amplitud máxima de la ola? Para ellos lo que hacemos es estudiar

Lo que conseguimos probar es

o, lo que es lo mismo, que la amplitud no puede crecer con el tiempo. Este resultado es idéntico al caso donde la profundidad es infinita. Sin embargo en las simulaciones habíamos visto que las diferencias a este nivel eran grandes:

Lo que ocurre es que la velocidad a la que cae la amplitud es distinta. En el caso de profundidad infinita tenemos

donde f_0(x)=f(x,0) es la ola inicial. En el caso de un medio acotado la amplitud evoluciona según

Así hemos obtenido la primera diferencia importante: la interfase en el caso de profundidad finita decae más despacio. 

Ahora cabe preguntarse ¿cómo evoluciona \max_x|\partial_x f(x,t)|? Esta cantidad nos da una idea de cómo es la longitud de onda. Sabemos que en el caso donde el medio no está acotado se tiene que

si \max_x|\partial_x f(x,0)|<1 entonces \max_x|\partial_x f(x,t)|<\max_x|\partial_x f(x,0)|\;\; \forall t>0.

En el caso de que el medio tenga profundidad finita tenemos una condición (razonablemente complicada y que escribiremos F) que involucra no sólo a \max_x|\partial_x f(x,0)| si no también a \max_x|f(x,0)|:

si F(\max_x|\partial_x f(x,0)|,\max_x|f(x,0)|)\leq 0 entonces \max_x|\partial_x f(x,t)|\leq\max_x|\partial_x f(x,0)|\;\; \forall t>0.

Una consecuencia de esto es que si esa condición se satisface y entonces tenemos una cota superior para \max_x|\partial_x f(x,t)| y por lo tanto la ola no puede romper.

Bueno, ahora que sabemos cuándo la interfase no rompe cabe preguntarse si hay alguna situación en la que la interfase rompa. Y efectivamente obtenemos que hay datos tales que pasa lo siguiente:

Es más, podemos probar mediante una prueba asistida con ordenador, que existen datos iniciales tales que sólo rompen cuando la profundidad es finita. Es decir, que el fondo ayuda a que las olas rompan. Y si bien hemos probado estos teoremas en el caso de fluidos moviéndose en un medio poroso estos dos últimos resultados se pueden probar gratis para el caso de las water waves, i.e. la interfase entre un fluido incompresible e irrotacional siguiendo las ecuaciones de Euler y el aire.

–Referencias:

D. Córdoba, RGB, R.Orive, The confined Muskat problem: differences with the deep water regime.

–Nota: Con esta entrada participamos en el Carnaval de Matemáticas en su edición 26, organizado esta vez por ZTFNews.

–Nota 2: Con esta entrada participamos también en el Carnaval de Física en su edición XXXIV que organiza Hablando de Ciencia.

Análisis de datos: Perfiles de linea en Python

Como físico experimental, una de las tareas que tengo que hacer día sí, día también, es análisis de datos. Y a menos que sea una cuenta corta (multiplicación, división, …), usualmente uno utiliza el ordenador para esta tarea.

Hace poco escribí un programita en Python para obtener perfiles de linea – esto es, secciones – de una imágen. Como me parece un programa simple y bastante útil quería compartirlo con el resto del mundo.

Peeeero, además de escribiros el código (que está al final), quería comentar de pasada el por qué y el cómo se representan imágenes.

Continue reading

Las matemáticas como ciencia experimental

Actualmente cuando uno piensa en problemas sin resolver en física piensa en la Teoría del Todo, en el bosón de Higgs o en los límites de validez de la mecánica cuántica. Sin embargo, existen problemas que son fáciles de entender que aún no tienen respuesta. Problemas que sólo involucran a la mecánica de Newton y que todavía no sabemos cómo atacar. Vamos a introducir el que nos ocupa con un experimento que puede ser fácilmente realizado en casa. Continue reading

De cuerdas y tambores, o cómo la física aparece en un problema de matemáticas

Cualquier estudiante de física tiene claro o al menos intuye cómo aparecen las matemáticas al estudiar problemas de física. Hoy vamos a hablar de cómo aparece la física en un teorema abstracto de matemáticas. Continue reading

Usando las Matemáticas en biología

Empezamos el año participando en la IX edición del Carnaval de Biología organizado por La Ciencia de la Vida. Corrientemente las personas que se dedican a la docencia tienen que oir la pregunta ¿pero esto para qué vale?. Esas preguntas normalmente se refieren a las matemáticas o la física. En esta nueva entrada en nuestro blog vamos a presentar brevemente una posible aplicación de las matemáticas, en este caso a la biología. Ni es la aplicación más útil ni la más interesante, pero es sencilla.