El Viernes pasado estuve en la conferencia “SERIES LÓGICAS Y CRÍMENES EN SERIE” de Guillermo Martínez, el autor de “Crímenes imperceptibles” (que es la novela en la que se basa la película “Los crímenes de Oxford”. La presentadora de la conferencia fue Rosa Montero y estaba organizada por el Instituto de Ciencas Matemáticas (que es donde trabajo).
La presentación del conferenciante no me gustó mucho. Creo que la señora Rosa Montero transmitió una serie de tópicos sobre los matemáticos que se pueden resumir en la siguiente frase, que cito textualmente,
“Tener un amigo matemático es como tener un amigo trapecista: exótico.”
La conferencia en sí no estuvo mal… No eran matemáticas y sospecho que este tipo de charlas divulgativas tienen un efecto contraproducente, pero Guillermo Martínez lo contó muy bien y ameno. En general pienso que este tipo de charlas hace que la gente culta de formación no-matemática piense que nosotros lo que hacemos es…mmm… ¿contar? ¿resolver problemas de lógica como los de los libros de pasatiempos? Y en una ausencia completa de humildad piensan que la matemática es algo completamente inútil. ¡Cómo no va a ser inútil resolver pasatiempos de manera profesional! Creo que toda conferencia divulgativa debería empezar indicando algo así:
“Señores, lo que van a ver aquí está muy alejado del campo en cuestión. Es algo divertido y fácil de entender, no como los problemas reales que tratamos de resolver.”
Vamos ahora al tema de la conferencia en cuestión: las series lógicas. Una serie lógica es una colección de símbolos o números finita y para la que se necesita continuación. Por ejemplo, 2,4,8,16… En la conferencia se nos habló de la falta de unicidad para la continuación. Es decir, que dada una serie la respuesta correcta no es única. En el ejemplo anterior todo el mundo diría que sigue el 32, pero 31 también es una respuesta correcta (se puede razonar, si alguien tiene interés que ponga su duda en los comentarios y la responderé).
Guillermo Martínez usó un argumento basado en interpolación para concluir que dada una colección finita de números hay una manera de razonar que permite continuar la serie con cualquier otro número. La idea es que dada la serie 2,4,8,16, la respuesta puede ser para cualquier número. Eso es porque podemos construir un polinomio (que se llama polinomio interpolador de Lagrange) de manera que pase por los puntos (1,2), (2,4), (3,8) (4,16) y (5,), por lo tanto dicho polinomio es una Ley que concuerda con los experimentos anteriores, pero entre las distintas “Leyes” difieren en el 5º experimento. Ludwig Josef Johann Wittgenstein ya habló de eso en su obra.
Así, dada una colección aparentemente aleatoria de números, podemos construir un polinomio interpolador que nos sirva de Ley y nos “explica” como “se han obtenido”. El tema de lo que significa “aleatorio” surge aquí, pues si dada una colección siempre podemos encontrar una Ley… ¿qué significa una colección de números aleatorios? Por ejemplo, en Matlab tenemos la función rand, que nos da un número entre 0 y 1 “aleatorio”. Claramente estos números no son aleatorios, los genera un ordenador usando una fórmula. Sin embargo usando los criterios existentes (que no nos dicen cuándo una secuencia es aleatoria sino cuándo una secuencia PASA POR aleatoria) son indistinguibles de números verdaderamente aleatorios (los que se sacasen con los ojos vendados de un bombo). Por lo tanto en la práctica nos sirven.
El problema de la inferencia de una Ley dado un número finito de experimentos es irresoluble, ya lo dijo Wittgenstein, sin embargo es lo que hace la física todos los días de manera más que aceptable. Basta con tener una Ley “dinámica”, me explico, si vale la usamos, cuando no valga la cambiamos por una que nos cumpla todos los nuevos experimentos y así vamos tirando para delante. Y he de decir que de manera más que satisfactoria. Por lo tanto, quiero desde aquí tranquilizar a todos los asistentes a la conferencia a los que vi visiblemente sorprendidos, casi en estado de shock. De acuerdo, no podemos saber si la Ley que usamos es la correcta, pero, mientras nos funcione bien ¿qué más nos da? Lo demás son pasatiempos.
“Señores, lo que van a ver aquí está muy alejado del campo en cuestión. Es algo divertido y fácil de entender, no como los problemas reales que tratamos de resolver.”
¿Qué pasa, que los problemas reales con los que se enfrenta un matemático son aburridos y difíciles de entender? Creo que esa visión del matemático como un ser que está por encima de todo es precisamente lo que lleva a personas como Rosa Montero a hacer un comentario como el que hizo.
Que las Matemáticas sean un pasatiempo o una profesión “digna”, ¿a quién le importa? Quiero decir , ¿qué tiene de malo dedicarse a resolver pasatiempos, mientras te paguen por ello…..? Y si alguien quiere encontrar alguna aplicación a lo que haces, pues adelante, tanto mejor para él, pero a ti que te quiten lo bailao. No entiendo la necesidad de justificarse continuamente, la verdad… Cuando alguien te dice que no eres productivo seguramente tendrá razón porque la gran mayoría de lo que se hace en Matemáticas (y en Ciencia en general) es una milonga adornada con grandes palabras que no hacen sino aumentar el ego de quien se siente capacitado para decirlas. Pero eso sí, por favor, seamos conscientes de una cosa: nuestro trabajo seguramente no cambie el mundo, pero ¿qué trabajo lo hace? Pocos, muy pocos…
Llámame mercenario, pero a mí mientras me dé para comer…. pues tan contento, porque yo sí que lo considero un pasatiempo, qué se le va a hacer…..
Querido matemático:
muchas gracias por dejarte caer por nuestro blog y animarte a opinar.
Dicho esto voy a aclarar mi opinión: quería decir que los problemas reales no son fáciles de entender, lo de divertido o no dependerá de gustos.
Yo lo que criticaba era que con ese tipo de charlas no se dice realmente qué es lo que hacemos. Se esboza una caricatura de algún área de las matemáticas donde no haga falta ningún tecnicismo y la abstracción sea mínima. Por otro lado, si la gente interesada (porque entiendo que quien no tenga un poquito de curiosidad no va a estas actividades) se va del auditorio pensando que somos unos “cerebritos interesados en chorradas inútiles” no creo que los matemáticos vayamos a tener buena prensa nunca.
Por eso abogo por intentar divulgar las matemáticas pero haciendo énfasis en que son necesarias. Quizá no cambien la vida de la gente de un día para otro, pero está claro que la Ciencia en general y las Matemáticas en particular han hecho posible el estado del bienestar a lo largo de diminutos cambios durante muchísimos años.