Modelizando el ala de un avión

Voy a tratar de explicar un modelo de cómo se comporta el aire (o en general un fluido), considerando que es incompresible.

Las ecuaciones de Navier-Stokes son la segunda ley de Newton (F=ma) para el caso de los medios continuos. Estas ecuaciones son parabólicas de orden 2. Las incógnitas son la presión y el campo de velocidades. La presión nos refleja una fuerza interna entre las partículas del fluido. Hay un término, el laplaciano, que nos refleja la difusión que viene del roce entre las partículas producido por la viscosidad. Lo ‘malo’ que tienen es que son muy, muy difíciles. En un caso simplificado son uno de los problemas del milenio, esos que si resuelves te pagan un millón de dólares de los EEUU. Para poder manejarse en estos temas se hacen más o menos hipótesis que nos simplifican mucho la vida, pero ¿hasta dónde estamos perdiendo en verosimilitud?.

Hay varias maneras de simplificar las ecuaciones, y las que he explicado arriba no son las más generales pues también se podrían considerar la temperatura, la densidad… como incógnitas. La primera manera es decir que tu fluido no es viscoso, en cuyo caso tus ecuaciones son hiperbólicas de orden uno. Se llaman ecuaciones de Euler. Estas también son muy complicadas y tampoco se conoce solución. No son un problema del milenio, pero si que darán la gloria al que lo saque. No son estas las ecuaciones de las que voy a hablar, sino otras más sencillas.

Voy a suponer que la temperatura es constante, así como la densidad. Además nuestro fluido es no viscoso, estacionario, es decir que no cambia con el tiempo. Supongamos también que nuestro fluido se mueve en dos dimensiones solamente, entonces podemos encontrar otra función, determinada de forma única por la primera que nos dará las trayectorias del fluido. Notaremos esta función por \Psi. En este caso todo es muchísimo más sencillo. Estamos hablando de flujos potenciales. En estos la velocidad viene dada como el gradiente de una cierta función incógnita, \Phi, por lo que podemos pasar de un sistema a una sola ecuación.

Además es una ecuación muy sencillita. Definimos la circulación como la integral a lo largo de nuestro perfil (el ala del avión) de la velocidad. Es lo mismo que integrar el rotacional de la velocidad en el interior del ala. Entonces podemos demostrar que sólo hay sustentación si la circulación es distinta de cero. Pero, con las hipótesis que hemos hecho, si añadimos que el aire muy lejos del perfil no haga remolinos, entonces tenemos que la circulación será cero, pues esta sólo puede moverse, no aparecer si antes no había (estamos en 2D y no hay viscosidad).

También podemos darnos cuenta de la paradoja de D’Alembert, que dice que en un fluido potencial y estacionario no hay resistencia aerodinámica.

Esto es bastante contradictorio con lo que vemos día a día, que los aviones vuelan y que si vamos contra el viento nos cuesta más.

La solución a estas paradojas es que nuestro fluido no es potencial, por lo menos no lo es en algunas zonas. Un fluido potencial no puede desarrollar turbulencia, y en el caso de la resistencia aerodinámica, es ésta la culpable de que nos cueste más (junto con la viscosidad). Pasa lo mismo con la sustentación. Para que haya sustentación, la circulación ha de ser distinta de cero.

Para avanzar en la comprensión de estos fenómenos hemos de separar el fluido en trozos, un trozo externo, donde podríamos habla de flujo potencial, y un flujo cercano al objeto inmerso en el fluido (el ala) y la parte de atrás de este donde los efectos de la viscosidad hacen que la vorticidad cambie localmente y tengamos circulación y turbulencias. Esto es el fenómeno de capa límite, que dice que lo que pasa es que los efectos de la viscosidad hay que contarlos en una zona muy pequeña alrededor del perfil y en la estela (zona de capa límite desprendida). Para ver unos dibujos dejo las soluciones calculadas con FREEfem++ en ambos casos (viscoso y potencial) y considerando un perfil circular.

Leave a Reply

Your email address will not be published. Required fields are marked *